Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32716141

RESUMO

The performances of reported electron transport layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurred at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we for the first time demonstrate that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (~3 nm) between the TCO and perovskite facilitates electron tunnelling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1% for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7%), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO 2 ETLs.

2.
Adv Mater ; : e2001581, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583905

RESUMO

Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4',4″,4″'-(pyrazine-2,3,5,6-tetrayl) tetrakis (N,N-bis(4-methoxyphenyl) aniline) (PT-TPA) which can effectively p-dope the surface of FAx MA1- x PbI3 (FA: HC(NH2 )2 ; MA: CH3 NH3 ) perovskite films is reported. The intermolecular charge transfer property of PT-TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT-TPA. After applying PT-TPA into perovskite solar cells, the doping-induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques.

4.
Ultrasound Med Biol ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553693

RESUMO

Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis. The present study introduces a new technique that measures the exponential decay in the amplitude of the backscatter signal quantified by a parameter called the backscatter amplitude decay constant (BADC). Measurements were performed on 54 specimens of cancellous bone from 14 human femurs using a 3.5-MHz transducer. Six methods were tested to determine BADC. The recommended method measures the time slope of the natural log of the rectified signal. Measured values of BADC ranged from approximately 0.1 µs-1 to 0.6 µs-1. Moderate to strong correlations (Spearman's ρ >0.7) were found between BADC and the density and microstructural characteristics of the specimens determined using X-ray microcomputed tomography. The results of this study suggest that BADC may be able to detect changes in the density and microstructure of cancellous bone caused by osteoporosis and other diseases.

5.
Pathog Dis ; 78(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592396

RESUMO

The evidence of long-term clinical dynamic on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA re-positive case are less. We performed a 108 days follow-up on dynamic clinical presentations in a case, who hospitalized three times due to the positive recurrence of SARS-CoV-2 RNA after discharge, to understand the prognosis of the 2019-Coronavirus disease (COVID-19). In this case, positive SARS-CoV-2 recurred even after apparent recovery (normal CT imaging, no clinical symptoms, negative SARS-CoV-2 on stool sample and negative serum IgM test) from COVID-19, viral shedding duration lasted for 65 days, the time from symptom onset to disappearance was up to 95 days. Erythrocyte-associated indicators, liver function and serum lipid metabolism presented abnormal throughout during the observation period. Awareness of atypical presentations such as this one is important to prompt the improvement of the management of COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/sangue , Infecções por Coronavirus/virologia , Pneumonia Viral/sangue , Pneumonia Viral/virologia , RNA Viral/genética , Eliminação de Partículas Virais , Adulto , Alanina Transaminase/sangue , Antivirais/uso terapêutico , Aspartato Aminotransferases/sangue , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Biomarcadores/sangue , HDL-Colesterol/sangue , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/tratamento farmacológico , Hospitalização , Humanos , Interferon alfa-2/uso terapêutico , Lopinavir/uso terapêutico , Masculino , Metilprednisolona/uso terapêutico , Pandemias , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/tratamento farmacológico , RNA Viral/isolamento & purificação , Recidiva , Tomografia Computadorizada por Raios X , gama-Glutamiltransferase/sangue
6.
Adv Mater ; 32(28): e2000999, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32406152

RESUMO

2D black phosphorene (BP) carries a stellar set of physical properties such as conveniently tunable bandgap and extremely high ambipolar carrier mobility for optoelectronic devices. Herein, the judicious design and positioning of BP with tailored thickness as dual-functional nanomaterials to concurrently enhance carrier extraction at both electron transport layer/perovskite and perovskite/hole transport layer interfaces for high-efficiency and stable perovskite solar cells is reported. The synergy of favorable band energy alignment and concerted cascade interfacial carrier extraction, rendered by concurrent positioning of BP, delivered a progressively enhanced power conversion efficiency of 19.83% from 16.95% (BP-free). Investigation into interfacial engineering further reveals enhanced light absorption and reduced trap density for improved photovoltaic performance with BP incorporation. This work demonstrates the appealing characteristic of rational implementation of BP as dual-functional transport material for a diversity of optoelectronic devices, including photodetectors, sensors, light-emitting diodes, etc.

7.
Adv Mater ; 32(28): e2000995, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468688

RESUMO

Currently, blade-coated perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs), that is, greater than 20%, normally employ methylammonium lead tri-iodide with a sub-optimal bandgap. Alloyed perovskites with formamidinium (FA) cation have narrower bandgap and thus enhance device photocurrent. However, FA-alloyed perovskites show low phase stability and high moisture sensitivity. Here, it is reported that incorporating 0.83 molar percent organic halide salts (OHs) into perovskite inks enables phase-pure, highly crystalline FA-alloyed perovskites with extraordinary optoelectronic properties. The OH molecules modulate the crystal growth, enhance the phase stability, passivate ionic defects at the surface and/or grain boundaries, and enhance the moisture stability of the perovskite film. A high efficiency of 22.0% under 1 sun illumination for blade-coated PSCs is demonstrated with an open-circuit voltage of 1.18 V, corresponding to a very small voltage deficit of 0.33 V, and significantly improved operational stability with 96% of the initial efficiency retained under one sun illumination for 500 h.

8.
Science ; 367(6484): 1352-1358, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193323

RESUMO

We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.

9.
Sensors (Basel) ; 20(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178235

RESUMO

Landslide susceptibility prediction (LSP) modeling is an important and challenging problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in limited LSP performance when leveraging conventional machine learning models. In this study, a deep-learning-based model using the long short-term memory (LSTM) recurrent neural network and conditional random field (CRF) in cascade-parallel form was proposed for making LSPs based on remote sensing (RS) images and a geographic information system (GIS). The RS images are the main data sources of landslide-related environmental factors, and a GIS is used to analyze, store, and display spatial big data. The cascade-parallel LSTM-CRF consists of frequency ratio values of environmental factors in the input layers, cascade-parallel LSTM for feature extraction in the hidden layers, and cascade-parallel full connection for classification and CRF for landslide/non-landslide state modeling in the output layers. The cascade-parallel form of LSTM can extract features from different layers and merge them into concrete features. The CRF is used to calculate the energy relationship between two grid points, and the extracted features are further smoothed and optimized. As a case study, the cascade-parallel LSTM-CRF was applied to Shicheng County of Jiangxi Province in China. A total of 2709 landslide grid cells were recorded and 2709 non-landslide grid cells were randomly selected from the study area. The results show that, compared with existing main traditional machine learning algorithms, such as multilayer perception, logistic regression, and decision tree, the proposed cascade-parallel LSTM-CRF had a higher landslide prediction rate (positive predictive rate: 72.44%, negative predictive rate: 80%, total predictive rate: 75.67%). In conclusion, the proposed cascade-parallel LSTM-CRF is a novel data-driven deep learning model that overcomes the limitations of traditional machine learning algorithms and achieves promising results for making LSPs.

10.
Nanotechnology ; 31(21): 215202, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32015223

RESUMO

Artificial intelligence devices that can mimic human brains are the foundation for building future artificial neural networks. A key step in mimicking biological neural systems is the modulation of synaptic weight, which is mainly achieved by various engineering approaches using material design, or modification of the device structure. Here, we realize the modulation of the synaptic weight of a Ta2O5/ITO-based all-metal oxide synaptic transistor via laser irradiation. Prior to the deposition of the active layer and electrodes, a femtosecond laser was used to irradiate the surface of the insulator layer. Typical synaptic characteristics such as excitatory postsynaptic current, paired pulse facilitation and long-term potentiation were successfully simulated under different laser intensities and scanning rates. In particular, we demonstrate for the first time that laser irradiation could control the quantity of oxygen vacancies in the Ta2O5 thin film, leading to precise modulation of the synaptic weight. Our research provides an instantaneous (<1 s), convenient and low-temperature approach to improving synaptic behaviors, which could be promising for neuromorphic computing hardware design.

11.
J Am Chem Soc ; 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32031790

RESUMO

State-of-the-art, high-performance perovskite solar cells (PSCs) contain a large amount of iodine to realize smaller bandgaps. However, the presence of numerous iodine vacancies at the surface of the film formed by their evaporation during the thermal annealing process has been broadly shown to induce deep-level defects, incur nonradiative charge recombination, and induce photocurrent hysteresis, all of which limit the efficiency and stability of PSCs. In this work, modifying the defective surface of perovskite films with cadmium iodide (CdI2) effectively reduces the degree of surface iodine deficiency and stabilizes iodine ions via the formation of strong Cd-I ionic bonds. This largely reduces the interfacial charge recombination loss, yielding a high efficiency of 21.9% for blade-coated PSCs with an open-circuit voltage of 1.20 V, corresponding to a record small voltage deficit of 0.31 V. The CdI2 surface treatment also improves the operational stability of the PSCs, retaining 92% efficiency after constant illumination at 1 sun intensity for 1000 h. This work provides a promising strategy to optimize the surface/interface optoelectronic properties of perovskites for more efficient and stable solar cells and other optoelectronic devices.

12.
J Phys Condens Matter ; 32(3): 035301, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31536971

RESUMO

The group delay time was theoretically studied in Weyl semimetals (WSMs) in the presence of strain. The Hartman effect, where the delay time for tunneling through a barrier tends to a constant for large barrier thickness, can be observed in WSMs when the incident angles [Formula: see text] and [Formula: see text], and the unidirectional strain tensor u 33 and shear strain tensor u 32, are larger than some critical values. We show that the Hartman effect is strongly dependent on the strength of the unidirectional strain tensor u 33 and the ratio of the shear strain tensor [Formula: see text]. We also found that tensile and compressive strains have different effects on the group delay time and the transmission probability T in WSMs. Our study shows the possibility of modulating the group delay time and the Hartman effect in strained WSMs.

13.
Sci Adv ; 5(12): eaax7537, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840067

RESUMO

The efficiencies of small-pixel perovskite photovoltaics have increased to above 24%, while most reported fabrication methods cannot be transferred to scalable manufacturing process. Here, we report a method of fast blading large-area perovskite films at an unprecedented speed of 99 mm/s under ambient conditions by tailoring solvent coordination capability. Combing volatile noncoordinating solvents to Pb2+ and low-volatile, coordinating solvents achieves both fast drying and large perovskite grains at room temperature. The reproducible fabrication yields a certified module efficiency of 16.4%, with an aperture area of 63.7 cm2. This method can be applied for various perovskite compositions. The perovskite modules also show a small temperature coefficient of -0.13%/°C and nearly fully recoverable efficiency after 58 cycles of shading, much better than commercial silicon and thin-film solar modules.

14.
Nat Commun ; 10(1): 5633, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822670

RESUMO

The efficiencies of green and red perovskite light-emitting diodes (PeLEDs) have been increased close to their theoretical upper limit, while the efficiency of blue PeLEDs is lagging far behind. Here we report enhancing the efficiency of sky-blue PeLEDs by overcoming a major hurdle of low photoluminescence quantum efficiency in wide-bandgap perovskites. Blending phenylethylammonium chloride into cesium lead halide perovskites yields a mixture of two-dimensional and three-dimensional perovskites, which enhances photoluminescence quantum efficiency from 1.1% to 19.8%. Adding yttrium (III) chloride into the mixture further enhances photoluminescence quantum efficiency to 49.7%. Yttrium is found to incorporate into the three-dimensional perovskite grain, while it is still rich at grain boundaries and surfaces. The yttrium on grain surface increases the bandgap of grain shell, which confines the charge carriers inside grains for efficient radiative recombination. Record efficiencies of 11.0% and 4.8% were obtained in sky-blue and blue PeLEDs, respectively.

15.
Nat Commun ; 10(1): 4498, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582749

RESUMO

Developing multijunction perovskite solar cells (PSCs) is an attractive route to boost PSC efficiencies to above the single-junction Shockley-Queisser limit. However, commonly used tin-based narrow-bandgap perovskites have shorter carrier diffusion lengths and lower absorption coefficient than lead-based perovskites, limiting the efficiency of perovskite-perovskite tandem solar cells. In this work, we discover that the charge collection efficiency in tin-based PSCs is limited by a short diffusion length of electrons. Adding 0.03 molar percent of cadmium ions into tin-perovskite precursors reduce the background free hole concentration and electron trap density, yielding a long electron diffusion length of 2.72 ± 0.15 µm. It increases the optimized thickness of narrow-bandgap perovskite films to 1000 nm, yielding exceptional stabilized efficiencies of 20.2 and 22.7% for single junction narrow-bandgap PSCs and monolithic perovskite-perovskite tandem cells, respectively. This work provides a promising method to enhance the optoelectronic properties of narrow-bandgap perovskites and unleash the potential of perovskite-perovskite tandem solar cells.

16.
Science ; 365(6452): 473-478, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371610

RESUMO

We show that converting the surfaces of lead halide perovskite to water-insoluble lead (II) oxysalt through reaction with sulfate or phosphate ions can effectively stabilize the perovskite surface and bulk material. These capping lead oxysalt thin layers enhance the water resistance of the perovskite films by forming strong chemical bonds. The wide-bandgap lead oxysalt layers also reduce the defect density on the perovskite surfaces by passivating undercoordinated surface lead centers, which are defect-nucleating sites. Formation of the lead oxysalt layer increases the carrier recombination lifetime and boosts the efficiency of the solar cells to 21.1%. Encapsulated devices stabilized by the lead oxysalt layers maintain 96.8% of their initial efficiency after operation at maximum power point under simulated air mass (AM) 1.5 G irradiation for 1200 hours at 65°C.

17.
Adv Mater ; 31(35): e1902413, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31271479

RESUMO

With power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long-term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood. It is shown that elevated device temperature coupled with excess charge carriers due to constant illumination is the dominant force in the rapid degradation of encapsulated perovskite solar cells under illumination. Cooling the device to 20 °C and operating at the maximum power point improves the stability of CH3 NH3 PbI3 solar cells over 100× compared to operation under open circuit conditions at 60 °C. Light-induced strain originating from photothermal-induced expansion is also observed in CH3 NH3 PbI3 , which excludes other light-induced-strain mechanisms. However, strain and electric field do not appear to play any role in the initial rapid degradation of CH3 NH3 PbI3 solar cells under illumination. It is revealed that the formation of additional recombination centers in PSCs facilitated by elevated temperature and excess charge carriers ultimately results in rapid light-induced degradation. Guidance on the best methods for measuring the stability of PSCs is also given.

18.
Chem Soc Rev ; 48(14): 3842-3867, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31187791

RESUMO

All highly-efficient organic-inorganic halide perovskite (OIHP) solar cells to date are made of polycrystalline perovskite films which contain a high density of defects, including point and extended imperfections. The imperfections in OIHP materials play an important role in the process of charge recombination and ion migration in perovskite solar cells (PSC), which heavily influences the resulting device energy conversion efficiency and stability. Here we review the recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells. Due to the ionic nature of OIHP materials, the defects in the photoactive films are inevitably electrically charged. The deep level traps induced by particular charged defects in OIHP films are major non-radiative recombination centers; passivation by coordinate bonding, ionic bonding, or chemical conversion have proven effective in mitigating the negative impacts of these deep traps. Shallow level charge traps themselves may contribute little to non-radiative recombination, but the migration of charged shallow level traps in OIHP films results in unfavorable band bending, interfacial reactions, and phase segregation, influencing the carrier extraction efficiency. Finally, the impact of defects and ion migration on the stability of perovskite solar cells is described.

19.
Nat Commun ; 10(1): 1276, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894519

RESUMO

Two-dimensional perovskites have emerged as more intrinsically stable materials for solar cells. Chemical tuning of spacer organic cations has attracted great interest due to their additional functionalities. However, how the chemical nature of the organic cations affects the properties of two-dimensional perovskites and devices is rarely reported. Here we demonstrate that the selection of spacer cations (i.e., selective fluorination of phenethylammonium) affects the film properties of two-dimensional perovskites, leading to different device performance of two-dimensional perovskite solar cells (average n = 4). Structural analysis reveals that different packing arrangements and orientational disorder of the spacer cations result in orientational degeneracy and different formation energies, largely explaining the difference in film properties. This work provides key missing information on how spacer cations exert influence on desirable electronic properties and device performance of two-dimensional perovskites via the weak and cooperative interactions of these cations in the crystal lattice.

20.
Sci Adv ; 5(3): eaav8925, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30873433

RESUMO

The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.5 (aperture, 0.08 cm2) and 20.0% (aperture, 1.1 cm2), with a record-small open-circuit voltage deficit of 0.35 V under AM1.5G illumination. The stabilized PCE reaches 22.6% under 0.3 sun. Anchoring monolayer bilateral amino groups passivates the defects at the perovskite surface and enhances perovskite stability by exposing the linking hydrophobic alkyl chain. Grain boundaries are reinforced by BAA and are more resistant to mechanical bending and electron beam damage. BAA improves the device shelf lifetime to >1000 hours and operation stability to >500 hours under light, with 90% of the initial efficiency retained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA