Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Cancer ; 9(2): 321-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344279


Purpose: SET and MYND domain-containing protein2 (SMYD2), a histone lysine methyltransferases, is a candidate human oncogene in multiple tumors. However, the expression dynamics of SMYD2 in hepatocellular carcinoma (HCC) and its clinical/prognostic significance are unclear. Methods: The SMYD2 expression profile was examined by quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) in HCC tissues and matched adjacent non-tumorous tissues. SMYD2 was silenced in HCC cell lines to determine its role in tumor proliferation and cell cycle progression, and the possible mechanism. Spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Results: The SMYD2 expression in HCC tissues were significantly up-regulated at both mRNA and protein levels as compared with the matched adjacent non-tumorous tissues. By IHC, positive expression of SMYD2 was examined in 122/163 (74.85%) of HCC and in 10/59 (16.95%) of tumor-adjacent tissues. Positive expression of SMYD2 was correlated with tumor size, vascular invasion, differentiation and TNM stage (P < 0.05). In univariate survival analysis, a significant association between positive expression of SMYD2 and shortened patients' survival was found (P < 0.05). Importantly, SMYD2 expression together with vascular invasion (P < 0.05) provided significant independent prognostic parameters in multivariate analysis. Functionally, SMYD2 silenced markedly inhibited cell proliferation and cell cycle progression in SMMC-7721 cell. Conclusions: Our findings provide evidences that positive expression of SMYD2 in HCC may be important in the acquisition of an aggressive phenotype, and it is an independent biomarker for poor prognosis of patients with HCC.

Colloids Surf B Biointerfaces ; 61(2): 132-7, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17888636


In this study, water-in-oil (W/O) miniemulsion was used as nanoreactor to prepare solid lipid nanoparticles (SLN) by solvent diffusion method. n-Hexane, Tween 80 and Span 80 were used as the oil phase and surfactant combination for preparation of W/O miniemulsion, respectively. The stable miniemulsion with the particle size of 27.1+/-7.6 nm was obtained when the composition of water/Tween 80/Span 80/n-hexane was 1 ml/18 mg/200 mg/10 ml. Clobetasol propionate (CP) was used as a model drug. The physicochemical properties of the SLN, such as particle size, zeta potential, surface morphology, drug entrapment efficiency, drug loading capacity and in vitro drug release behaviors were investigated, comparing with those of SLN prepared by conventional aqueoethod. The SLN prepared by the novel method displayed smaller particles size and higher dus solvent diffusion mrug entrapment efficiency than those of SLN prepared by the conventional method. The drug entrapment efficiency decreased with increasing of charged amount of drug, and 15.9% of drug loading was achieved as the charged amount of drug was 20%. The in vitro drug release tests indicated that the drug release rate was faster than that of SLN prepared by the conventional method, and the drug content in SLN did not affect the in vitro drug release profile.

Lipídeos/química , Nanopartículas/química , Nanotecnologia/métodos , Solventes/química , Clobetasol/química , Diálise , Difusão/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Emulsões/química , Microscopia de Força Atômica , Óleos/química , Tamanho da Partícula , Tensoativos/farmacologia , Água/química