Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 19(1): 242, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690259

RESUMO

BACKGROUND: Mycoplasma hyorhinis (Mhr) is the etiologic agent of lameness and polyserositis in swine. P37 is a membrane protein of Mhr that may be an important immunogen and is a potential target for diagnostic development. However, there is little information concerning Mhr P37 protein epitopes. A precise analysis of the P37 protein epitopes should extend our understanding of the antigenic composition of the P37 protein and the humoral immune responses to Mhr infection. Investigating the epitopes of Mhr P37 will help to establish a detection method for Mhr in tissue and provide an effective tool for detecting Mhr infection. RESULTS: Western blot and indirect immunofluorescence assays (IFA) confirmed that the expressed P37 protein was recognized by Mhr-positive porcine and mouse sera. Furthermore, the P37 protein was purified using affinity chromatography and used to immunize mice for hybridoma cell fusion. Four monoclonal antibodies (mAbs) found to be positive for Mhr were detected in infected lung tissue. A panel of truncated P37 proteins was used to identify the minimal B cell linear epitopes of the protein based on these mAbs. The core epitope was determined to be 206KIKKAWNDKDWNTFRNF222. CONCLUSIONS: In this study, we identified 17 critical amino acids that determine the epitope of the P37 protein of Mhr. This study identified mAbs that could provide useful tools for investigating the Mhr P37 antigenic core epitope (amino acids 206-222) and detecting Mhr-specific antigens in infected tissue.

2.
J Integr Plant Biol ; 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595698

RESUMO

In plants, submergence from flooding causes hypoxia, which impairs energy production and affects plant growth, productivity, and survival. In Arabidopsis, hypoxia induces nuclear localization of the group VII ethylene-responsive transcription factor RELATED TO AP2.12 (RAP2.12), following its dissociation from the plasma membrane-anchored ACYL-COA-BINDING PROTEIN1 (ACBP1) and ACBP2. Here, we show that polyunsaturated linolenoyl-CoA (18:3-CoA) regulates RAP2.12 release from the plasma membrane. Submergence caused a significant increase in 18:3-CoA, but a significant decrease in 18:0-, 18:1-, and 18:2-CoA. Application of 18:3-CoA promoted nuclear accumulation of the green fluorescent protein (GFP) fusions RAP2.12-GFP, HYPOXIA-RESPONSIVE ERF1-GFP, and RAP2.3-GFP, and enhanced transcript levels of hypoxia-responsive genes. Plants with decreased ACBP1 and ACBP2 (acbp1 ACBP2-RNAi, produced by ACBP2 RNA interference in the acbp1 mutant) had reduced tolerance to hypoxia and impaired 18:3-CoA-induced expression of hypoxia-related genes. In knockout mutants and overexpression lines of LONG-CHAIN ACYL-COA SYNTHASE2 (LACS2) and FATTY ACID DESATURASE 3 (FAD3), the acyl-CoA pool size and 18:3-CoA levels were closely related to ERF-VII-mediated signaling and hypoxia tolerance. These findings demonstrate that polyunsaturation of long-chain acyl-CoAs functions as important mechanism in the regulation of plant hypoxia signaling, by modulating ACBP-ERF-VII dynamics. This article is protected by copyright. All rights reserved.

3.
Wei Sheng Yan Jiu ; 48(5): 757-764, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31601316

RESUMO

OBJECTIVE: To elucidate the association between lifestyle and dietary factors and esophageal squamous cell carcinoma( ESCC) in three different sections of the esophagus. METHODS: From January 2010 to December 2016, a hospital-based case-control study was conducted, and a total of 550 patients with ESCC and gender and age( ±3 age) frequency-matched 550 cancer-free control subjects were recruited in this study. Odds ratios( ORs) and their corresponding 95% confidence intervals( CIs) were calculated by using unconditional binary or multinomial logistic regression. Multiple correspondence analysis( MCA) was applied to illustrate the influence of the risk factors on different sections of the esophagus. RESULTS: Tea drinking was associated with lower risk of upper( Ut) and lower thoracic( Lt) ESCC( OR = 0. 40, 95% CI 0. 22-0. 73; OR= 0. 50, 95% CI 0. 31-0. 81; for Ut and Lt, respectively), and lower intake of vegetables increased the risk of Ut and Lt ESCC( OR = 3. 93, 95% CI 1. 61-9. 61; OR =2. 68, 95% CI 1. 30-5. 53; for Ut and Lt, respectively). Intake of hot food, hard food and lower intake of fruits were associated with an elevated risk of the ESCC in all subsites( P<0. 05). The strength of association between drinking and ESCC was lower in middle thoracic( Mt) compared with the Lt ESCC( OR = 0. 58, 95% CI 0. 35-0. 98). Moreover, this reduction of association strength were also found in eating hot food( OR = 0. 45, 95%CI 0. 27-0. 76) and lower intake of vegetables( Ut OR = 0. 44, 95% CI 0. 20-0. 99). However, the association between lower intake of fruits and the Mt ESCC risk was stronger compared with Lt ESCC( OR = 1. 66, 95% CI 1. 08-2. 55). In additional, the association between lower intake of fruits and the Ut ESCC risk was stronger compared with Mt ESCC. Joint category plot of MCA also identified the heterogeneous associations between risk factors and different sections of the esophagus. CONCLUSION: Differences in risk factors of ESCC in different subsites, intake of hot food, hard food, and lower intake of vegetables were common risk factors for three subsites of ESCC.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31634035

RESUMO

Invasive meningococcal disease (IMD) caused by the bacteria Neisseria meningitidis is rare but potentially fatal. For healthy adolescents, the US Advisory Committee on Immunization Practices (ACIP) recommends routine vaccination with MenACWY and recommends MenB vaccination under shared clinical decision-making (previously "Category B"). The recommendation for MenB vaccination was the first category B recommendation in adolescents, and it is unclear how healthcare providers (HCPs) implement these guidelines. This 2017 web-based survey of US HCPs explored characteristics associated with prescribing or receiving MenB and MenACWY vaccines, HCP knowledge of vaccine recommendations, and real-world practice patterns. Of 529 respondents, 436 prescribed MenB vaccines to their eligible adolescent/young adult patients and 93 prescribed MenACWY vaccines only. MenB vaccine prescribers were more likely to be pediatricians compared with MenACWY vaccine only prescribers, and patients who received MenB vaccines were more likely to be non-Hispanic whites living in shared spaces (eg, college dormitories) than those not receiving the vaccine. Seventy-seven percent of HCPs indicated that they prescribe MenACWY vaccines consistently with ACIP recommendations (to all members of an age group), whereas only 7% indicated that they prescribe MenB vaccines consistently with ACIP recommendations (individual clinical decision making). Patient-related factors, disease-related factors, and guidelines all influenced HCP decisions to prescribe meningococcal vaccines. Providing HCPs with clear guidance on how to initiate discussion of MenB vaccines with patients and their caregivers may aid in fully protecting US adolescents against meningococcal disease caused by 5 of the disease-causing serogroups.

5.
J Pharm Sci ; 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31629734

RESUMO

The binary-lipid system of soybean phosphatidylcholine (SPC) and glycerol dioleate (GDO) can hydrate to gels upon contacting with aqueous mediums, which has emerged as a versatile and promising delivery matrix for extended drug release applications. In the present work we have characterized the gelation process of this SPC/GDO lyotropic gel (SGLG) system by rheology, and evaluated the drug release profiles from the SGLG formulations with different SPC/GDO mass ratios. Our study has demonstrated that simply adjusting the SPC/GDO mass ratio can tune the lipid gelation behavior and modulate the drug release profiles. More importantly, the drug release from the SGLG formulations follows a two-compartment (fast and slow release compartments) release kinetics that has not been reported before. We posit that the fast release compartment corresponds to the passive diffusion of the drug during the early stage of the gel formation. After the boundary gel phase generation, the drug release is then dominated by the slow diffusion process from SGLG. The pharmacokinetics studies in rats match well with the in vitro studies, suggesting that the binary-lipid formulation is an excellent candidate for on-demand sustained drug delivery system.

6.
Toxicol Lett ; 317: 110-119, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618666

RESUMO

Trichloroethylene (TCE), a commonly used industrial solvent and degreasing agent, is known to cause trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including skin, liver and kidney. Clinical evidence have shown that the kidney injury occurs in THS and our previous studies suggested that the terminal complement complex C5b-9 deposited in impaired renal tubules induced by TCE with unclear mechanisms. In the present study, we questioned whether activation of the complement system with renal deposition of C5b-9 contributes to TCE-induced kidney injury in THS. We established a BALB/c mouse model of TCE sensitization with or without pretreatment of exogenous CD59, a C5b-9 inhibitory protein. H&E staining, PAS staining, and biochemical detection of urinary proteins were performed to assess renal function. Deposition of C5b-9 and expression of CD59 were evaluated by immunohistochemistry. Sub-lytic effects of C5b-9 in tubular epithelial cells were assessed by lactate dehydrogenase (LDH) cytotoxicity assay. Expression of endocytosis receptors megalin and cubilin on proximal tubules were assessed by immunofluorescence and qRT-PCR. We found that TCE sensitization induced structural and functional changes of renal tubules in mice, associated with the deposition of sub-lytic C5b-9 on proximal tubular epithelial cells. TCE sensitization decreased proximal tubule uptake of filtered proteins and renal expression of megalin and cubilin, phenotypes that were attenuated by pretreatment with exogenous CD59. Overall, our findings reveal a novel mechanism underlying sub-lytic C5b-9 acting on megalin and cubilin, contributes to the renal tubules damage by TCE exposure.

7.
Virology ; 539: 1-10, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31605941

RESUMO

Endoplasmic reticulum (ER) stress is associated with numerous mammalian diseases, especially viral diseases. Porcine parvovirus (PPV) is the causative agent of reproductive failure in swine. Here, we observed that the PPV infection of porcine kidney 15 and porcine testis cells resulted in the activation of ER stress sensors mediated by protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 and activating transcription factor 6 (ATF6). ER stress activation obviously blocked PPV replication. Depletion of proteins, such as PERK, eukaryotic initiation factor 2, and ATF4, by small interfering RNA significantly enhanced PPV replication. Moreover, the pro-apoptotic factor C/EBP homologous protein was identified a key factor in the inhibition of PPV replication. These data demonstrate that PPV infection activates ER stress through the PERK signaling pathway and that ER stress inhibits further PPV replication by promoting apoptosis.

8.
Plant Sci ; 289: 110256, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623792

RESUMO

The plant-specific NAC transcription factors play diverse roles in various stress signaling. Alternative splicing is particularly prevalent in plants under stress. However, the investigation of cadmium (Cd) on the differential expression of the splice variants of NACs is in its infancy. Here, we identified three Cd-induced intron retention splice NAC variants which only contained the canonical NAC domain, designated as nacDomains, derived from three Cd-upregulated maize NACs. Subcellular localization analysis indicated that both nacDomain and its full-length NAC counterpart co-localized in the nucleus as manifested in the BiFC assay, thus implied that nacDomains and their corresponding NACs form heterodimers through the identical NAC domain. Further chimeric reporter/effector transient expression assay and Cd-tolerance assay in tobacco leaves collectively indicated that nacDomain-NAC heterodimers were involved in the regulation of NAC function. The results obtained here were in accordance with the model of dominant negative, which suggested that nacDomain act as the dominant negative to antagonize the regulation of NAC on its target gene expression and the Cd-tolerance function performance of NAC transcription factor. These findings proposed a novel insight into understanding the molecular mechanisms of Cd response in plants.

9.
Ecotoxicol Environ Saf ; 186: 109772, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31614297

RESUMO

Trichloroethylene (TCE) is a common organic solvent which can cause TCE hypersensitivity syndrome (THS) in exposure workers. THS is an adverse skin disorder with severe inflammatory kidney damage. Complement C3a receptor (C3aR) acts as a specific receptor for the key complement cleavage product C3a and involves multiple inflammatory responses, but the role of C3aR in TCE induced kidney inflammatory injury remains unknown. In this study, BALB/c mouse model of skin sensitization induced by TCE was set up in the presence or absence of C3aR antagonist (C3aRA). Kidney pathology and renal function, expression of inflammatory mediators and C3aR, changes in Th17 cell numbers, and activation of signal transducer and activator of transcription 3 (STAT3) in the kidney were examined. TCE sensitization produced histopathological and functional damage to the kidney, accompanied by increased levels of interleukin (IL-) 1ß, IL-6, and IL-23. Local accumulation of Th17 cells and enhanced phosphorylation of STAT3 were also seen in the impaired kidney in TCE sensitization-positive mice. C3aR was mainly located in the impaired glomerulus and upregulated in TCE sensitization-positive mice. C3aRA pretreatment alleviated the structural and functional kidney damage and the inflammatory cytokine and Th17 responses by TCE sensitization, and specifically reduced the phosphorylation of STAT3. Together, our results demonstrate that C3aR signaling promotes the inflammatory responses and regulates the accumulation of Th17 phenotype via phosphorylation of STAT3 in TCE sensitization induced inflammatory kidney damage. C3aR may serve as a potential therapeutic target in TCE sensitization mediated kidney injury.

10.
Nat Commun ; 10(1): 4871, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653838

RESUMO

One of the main challenges for immune checkpoint blockade antibodies lies in malignancies with limited T-cell responses or immunologically "cold" tumors. Inspired by the capability of fever-like heat in inducing an immune-favorable tumor microenvironment, mild photothermal therapy (PTT) is proposed to sensitize tumors to immune checkpoint inhibition and turn "cold" tumors "hot." Here we present a combined all-in-one and all-in-control strategy to realize a local symbiotic mild photothermal-assisted immunotherapy (SMPAI). We load both a near-infrared (NIR) photothermal agent IR820 and a programmed death-ligand 1 antibody (aPD-L1) into a lipid gel depot with a favorable property of thermally reversible gel-to-sol phase transition. Manually controlled NIR irradiation regulates the release of aPD-L1 and, more importantly, increases the recruitment of tumor-infiltrating lymphocytes and boosts T-cell activity against tumors. In vivo antitumor studies on 4T1 and B16F10 models demonstrate that SMPAI is an effective and promising strategy for treating "cold" tumors.

11.
Chemosphere ; 239: 124779, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521934

RESUMO

Laccase mediator system (LMS), a very attractive candidate for refractory organics biodegradation, harbors tremendous potential on industry application. However, the performance of LMS usually varies with the discrepancy of mediators and substrates in their chemical structures. Here, we adopt electrochemical analysis that is able to assess the degradation performance of various LMS on three different dyes by quantitative analysis of reaction outcome. Two mechanisms were suggested to explain the grafting of three mediators (1-Hydroxybenzotriazole, Violuric Acid and Acetosyringone), involving the transformation of proton or electron to produce active moieties, which subsequently react with target substrates. A thorough electrochemical insight into the redox features of mediators and its change in the presence of laccase and substrates were carried out using electrochemical analysis. The effectiveness of each kind of LMS on substrates was preliminarily evaluated by analyzing the change of the peak current and potential of mediators. The actual conversion rate of dyes was used to verify the analysis results, which confirms the important role of the stability of the oxidized form as well as their redox potential of the mediators in determining the mechanism of substrate oxidation. The application of electrochemical analysis in efficiency evaluation of LMS shed new light on effective selection of suitable mediators for degradation of refractory organics. It was therefore possible to prejudge the efficacy of LMS by analyzing the electrochemical parameters of target substances and mediators, which undoubtedly has broad further application prospects of LMS.

12.
Plant Sci ; 288: 110218, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521214

RESUMO

Salt stress is a major constraint to plant growth and development, and plants have developed sophisticated mechanisms to cope with it. AtAGO2, an argonaute protein, is known to play an important role in plant adaptation to salt stress; however, the molecular mechanism of this phenomenon remains essentially unexplored. Here, we performed the yeast two-hybrid assay and found an R3H-domain containing protein, designated as MUG13.4, interacting with AtAGO2. Further bimolecular fluorescence complement (BiFC), glutathione-S-transferase (GST) pull-down, and co-immunoprecipitation (Co-IP) assays confirmed that MUG13.4 interacted with AtAGO2, and MUG13.4 could affect the slicing activity of AtAGO2 associated with miR173. MUG13.4 and AtAGO2 were both predominantly expressed in seeds and roots. Phenotypic analyses of the single and double mutants under salt stress confirmed involvement of MUG13.4-AtAGO2 complex as a component of the salt tolerance mechanism. The mug13.4×ago2-1 double mutant displayed retarded growth and hypersensitivity to salt stress that was more pronounced than in mug13.4 or atago2-1 single mutants. TAS1c-tasiRNA generating system in Nicotiana benthamiana revealed that MUG13.4 could influence the slicing activity of AtAGO2. We also found that MUG13.4 increasingly changed the phenotype of slicer-defected mutants of AtAGO2 in response to salt stress. These findings suggested that the function of AtAGO2 upon salt stress was dependent on MUG13.4. Further investigation suggested that AtAGO2 improved Arabidopsis tolerance to salt stress by affecting operation of the SOS signaling cascade at the transcript level. Taken together, these findings reveal a novel function of MUG13.4 in adjusting Arabidopsis adaptation to salt stress.

13.
J Nutr Biochem ; 72: 108209, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473510

RESUMO

White blood cells are among the first responders to dietary components and their metabolites absorbed from the gut. The objective of this study was to determine the whole blood transcriptome response to high-fat challenge meals. A total of 45 fasting and postprandial (3-h and 6-h) whole blood transcriptomes from 5 subjects in a crossover intervention trial of a high-fat meal supplemented with placebo, blueberry powder or docosahexaenoic acid (DHA) were analyzed using RNA sequencing. Select target genes were validated by quantitative reverse-transcription polymerase chain reaction in 180 samples from 20 subjects. The largest contributor to variance was the subject (13,856 genes differentially expressed), followed by the subject on a specific day (2276 genes), followed by the subject's postprandial response (651 genes). After determining the nonsignificance of individual dietary treatments (blueberry, DHA, placebo), treatments were used as replicates to examine postprandial responses to a high-fat meal. The universal postprandial response (95 genes) was associated with lipid utilization, fatty acid beta-oxidation and circadian rhythms. Subject-specific postprandial responses were enriched for genes involved in the innate immune response, particularly those of pattern recognition receptors and their downstream signaling components. Genes involved in innate immune responses are differentially expressed in a subject-specific and time-dependent manner in response to the high-fat meals. These genes can serve as biomarkers to assess individual responsiveness to a high-fat diet in inducing postprandial inflammation. Furthermore, the dynamic temporal change in gene expression in postprandial blood suggests that monitoring these genes at multiple time points is necessary to reveal responders to dietary intervention.

14.
iScience ; 19: 224-231, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31377667

RESUMO

Despite the success for targeted delivery in the body, the efficient release without side effects caused by residual drug remains a challenge. For reducing residual drug, the pH-responsive carriers were prepared by self-assembly from aromatic macrocycles, which were non-toxic and biocompatible. The inner surroundings of aromatic macrocycles could be protonated positively by acid inducing the separation of neighboring macrocycles. Thus, Dox-loaded carriers successfully inhibited the proliferation of carcinoma cells (HepG2 and 4T1) rather than normal cells (HL7702). The effects were further proved in vivo without systemic cytotoxicity. Notably, the responsive environment for drug release depended on the concentration of carriers. Particularly, drug release was promoted by carrier separation. Carrier 2 exhibited preferable anticancer efficacy than carrier 1 due to the efficient release of Dox by full separation of the carrier. Collectively, we have developed a novel strategy serving as a selective and controlled drug release platform for cancer therapeutics.

15.
Nutrients ; 11(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405126

RESUMO

Lactase persistence (LP) is a trait in which lactose can be digested throughout adulthood, while lactase non-persistence (LNP) can cause lactose intolerance and influence dairy consumption. One single nucleotide polymorphism (SNP ID: rs4988235) is often used as a predictor for dairy intake, since it is responsible for LP in people in European descent, and can occur in other ethnic groups. The objective of this study was to determine whether rs4988235 genotypes and ethnicity influence reported dairy consumption in the United States (U.S.). A food frequency questionnaire (FFQ) and multiple Automated Self-Administered 24-h recalls (ASA24®) were used to measure habitual and recent intake, respectively, of total dairy, cheese, cow's milk, plant-based alternative milk, and yogurt in a multi-ethnic U.S. cohort genotyped for rs4988235. Within Caucasian subjects, LP individuals reported consuming more recent total dairy and habitual total cow's milk intake. For subjects of all ethnicities, LP individuals consumed more cheese (FFQ p = 0.043, ASA24 p = 0.012) and recent total dairy (ASA24 p = 0.005). For both dietary assessments, Caucasians consumed more cheese than all non-Caucasians (FFQ p = 0.036, ASA24 p = 0.002) independent of genotype, as well as more recent intake of yogurt (ASA24 p = 0.042). LP subjects consumed more total cow's milk than LNP, but only when accounting for whether subjects were Caucasian or not (FFQ p = 0.015). Fluid milk and alternative plant-based milk consumption were not associated with genotypes or ethnicity. Our results show that both LP genotype and ethnicity influence the intake of some dairy products in a multi-ethnic U.S. cohort, but the ability of rs4988235 genotypes to predict intake may depend on ethnic background, the specific dairy product, and whether intake is reported on a habitual or recent basis. Therefore, ethnicity and the dietary assessment method should also be considered when determining the suitability of rs4988235 as a proxy for dairy intake.

16.
ACS Appl Mater Interfaces ; 11(34): 31220-31226, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31380620

RESUMO

Since organic pollutants in water resources have raised concerns on aquatic ecosystems and human health, mechanical machines such as a nanopump for rapid and efficient removal of pollutants from water with regeneration properties remains a challenge. Here, a pH-responsive artificial pump from left-handed porous tubules into right-handed solid fibers was presented by the self-assembly of bent-shaped aromatic amphiphiles. The bent-shaped amphiphile with a pH-sensitive segment was demonstrated in aromatic hexameric macrocycles, which could contract into dimeric disks. Such a switchable aromatic pore with superhydrophobicity was well-suited for an efficient removal and controlled release of organic pollutants from water through pulsating motion. The removal efficiency is found to be 78% for ethinyloestradiol and 82% for bisphenol. Additionally, the pumping accompanied by chiral inversion was endowed with a rapid removal and convenient regenerable ability. The inflation from right-handed solid fibers into left-handed tubules for efficient removal pollutants was remarkably promoted by (-)-acidic enantiomer of malic acid, whereas the contraction with full desorption of pollutants was incisively responsive to alkaline with (+)-conformation. The kinetically regulable porous device with a chiral recognition will provide a promising platform for the construction of rapid responsible machine for sewage treatment.

17.
Am J Physiol Renal Physiol ; 317(3): F658-F669, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364375

RESUMO

Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-ß immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.

18.
Nano Lett ; 19(8): 5222-5228, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31295399

RESUMO

The brittleness of oxide glasses has dramatically restricted their practical applications as structural materials despite very high theoretical strength. Herein, using molecular dynamics simulations, we show that silica glass prepared by consolidating glassy nanoparticles exhibit remarkable tensile ductility. Because of dangling bonds at surfaces and high contact stresses, the pressure applied for consolidating glassy nanoparticles to achieve ductility is significantly lower than that required to toughen bulk glass via permanent densification. We have identified 5-fold silicon, with a higher propensity to carry out local shear deformation than 4-fold silicon, as the structural origin for the observed tensile ductility. Interestingly, the work hardening effect has been, for the first time, observed in thus-prepared silica glass, with its strength increasing from 4 GPa to ∼7 GPa upon cold work. This is due to stress-assisted relaxation of 5-fold silicon to 4-fold during cold work, analogous to transformation hardening.

19.
Arch Virol ; 164(10): 2435-2449, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31273470

RESUMO

A total of 472 samples from domestic pigs collected in China from 2015 to 2018 were tested for the presence of porcine circovirus types 2 and 3 (PCV2 and PCV3, respectively) by conventional polymerase chain reaction analysis. The prevalence of PCV2, PCV3, and PCV2/3 co-infection was 50.0%, 13.3%, and 6.78%, respectively. The complete genomic sequences of 66 PCV2 isolates and four PCV3 isolates were determined. Based phylogenetic analysis, the PCV2 isolates were assigned to three genotypes, PCV2a, PCV2b, and PCV2d, representing 13.6% (9/66), 25.8% (17/66), and 60.6% (40/66) of the total, respectively. All four PCV3 isolates shared a high degree of similarity in their complete nucleotide sequences (98.8-99.8% identity) and ORF2 amino acid sequences (98.6-99.5% identity). These results indicate that all three PCV2 genotypes (PCV2a, PCV2b, and PCV2d) are present on pig farms and that PCV2d has become the predominant genotype. The predicted amino acid sequences of the four PCV3 isolates indicated that PCV3-CN-JL53/PCV3-CN-LN56, PCV3-CN-HLJ3, and PCV3-CN-0710, belonged to the genotypes PCV3a, PCV3b, and PCV3a-IM, respectively. In view of the great harm that PCV2 causes to the pig industry, the epidemic trend of PCV3 should continue to be closely monitored. This study provides information about the prevalence, genetic diversity, and molecular epidemiology of PCV2 and PCV3 in China from 2015 to 2018.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/isolamento & purificação , Variação Genética , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , China/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/genética , Fazendas , Genótipo , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sus scrofa , Suínos
20.
Water Res ; 162: 358-368, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295655

RESUMO

Practical application of metallurgical microbial electrolysis cells (MECs) requires efficient removal of metals and organics in larger reactors. A 40 L cylindrical single-chamber MEC fed acetate was used to achieve high removals of W(VI) and Mo(VI). In the presence of both metals, there were nearly complete removals of W (97 ‒ 98%), Mo (98 ‒ 99%), and acetate (95 ‒ 96%), along with a low level of hydrogen production (0.0037-0.0039 L/L/d) at a hydraulic residence time (HRT) of 2 d (influent ratios of W:Mo:acetate of 0.5:1.0:24 mM). The final concentrations of these conditions were sufficient to meet national wastewater discharge standards. In the controls with individual metals or acetate, lower contaminant removals were obtained (W, 2 ‒ 4%; Mo, 3 ‒ 5%, acetate, 36 ‒ 39%). Metals removal in all cases was primarily due to the biocathodes rather than the bioanodes. The presence of metals decreased microbial diversity on the anodes and increased diversity on the cathodes, based on analysis at the phylum, class and genus levels, as a function of HRT and influent concentration. This study demonstrated the feasibility of larger-scale single-chamber MECs for efficient treatment of W and Mo, moving metallurgical MECs closer to commercialization for wastewater treatment of these two metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA