Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.166
Filtrar
1.
Front Behav Neurosci ; 16: 896545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783230

RESUMO

Most coal mine accidents are caused by the unsafe behavior of employees. Previous studies have shown that there is a significant connection among the working environment, the psychological state of employees, and unsafe behaviors. However, the internal biological mechanism has not been revealed. To explore the physiological and psychological alterations of coal mine workers and the underlying mechanisms that cause unsafe behaviors, the current study established a novel coal mine environment biological simulation (CEBS) model in mice. This model recreated the underground workplace environment facts in coal mines such as temperature, humidity, and noise, and mice were employed to receive these conditioning stresses according to the 8-h work. Animal behavior tests were performed to evaluate the evolution of the mental state including anxiety and depression, as well as the abilities of learning and memory during the 4-week environmental simulation. CEBS mice showed the adaptation process of anxiety from occurrence to stability in the process of environmental simulation, and also suffered from severe depression compared to the control mice. In addition, impaired spatial memory was also implicated in mice after 4-week CEBS. The behavior results of CEBS mice were consistent with the previous psychological investigation of coal workers. In summary, a novel mouse model was established in this study to depict the occurrence of negative emotions and impaired cognition in coal miners by simulating the underground workplace environment, which provided a basis for further exploring the biological mechanism of miners' unsafe behavior.

2.
Front Cell Infect Microbiol ; 12: 934460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899042

RESUMO

Lung macrophages are substantially distinct from other tissue-resident macrophages. They act as frontier sentinels of the alveolar-blood interface and are constantly exposed to various pathogens. Additionally, they precisely regulate immune responses under homeostatic and pathological conditions to curtail tissue damage while containing respiratory infections. As a highly heterogeneous population, the phenotypes and functions of lung macrophages with differing developmental ontogenies are linked to both intrinsic and extrinsic metabolic processes. Importantly, targeting these metabolic pathways greatly impacts macrophage functions, which in turn leads to different disease outcomes in the lung. In this review, we will discuss underlying metabolic regulation of lung macrophage subsets and how metabolic circuits, together with epigenetic modifications, dictate lung macrophage function during bacterial infection.


Assuntos
Infecções Bacterianas , Macrófagos Alveolares , Infecções Bacterianas/patologia , Humanos , Imunidade , Pulmão/microbiologia , Macrófagos
3.
Sci Adv ; 8(27): eabn0193, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857453

RESUMO

The lateral habenula (LHb) is implicated in emotional processing, especially depression. Recent studies indicate that the basal forebrain (BF) transmits reward or aversive signals to the LHb. However, the contribution of the BF-LHb circuit to the pathophysiology of depression still needs to be determined. Here, we find that the excitatory projection to the LHb from the substantia innominata (SI), a BF subregion, is activated by aversive stimuli and inhibited by reward stimuli. Furthermore, chronic activation of the SI-LHb circuit is sufficient to induce depressive-like behaviors, whereas inhibition of the circuit alleviates chronic stress-induced depressive-like phenotype. We also find that reward consumption buffers depressive-like behaviors induced by chronic activation of the SI-LHb circuit. In summary, we systematically define the function and mechanism of the SI-LHb circuit in modulating depressive-like behaviors, thus providing important insights to better decipher LHb processing in the pathophysiology of depression.

4.
Food Chem ; 395: 133601, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35816988

RESUMO

Phenolic compounds are one of the wholesome substances of mung bean sprouts, showing numerous health-promoting functions. Here, effects of sucrose on phenolic compounds profiles of mung bean sprouts were investigated. Results showed that the content and composition of phenolic compounds were significantly altered by 1‰ and 5‰ sucrose, respectively. The antioxidant capacity was significantly improved by sucrose. Based on metabolomics, 251 metabolites were detected, of which 106 were phenolic compounds. Correlation analysis showed 21 phenolics were positively correlated with antioxidant capacity. The changes in phenolic composition and antioxidant capacity after sucrose treatment were mainly due to the enrichment of phenolic biosynthesis pathways. Moreover, the gene expression and enzyme activity analysis of key phenolic biosynthetic genes contributed to elucidate the phenolic profile under sucrose treatment. In summary, mung bean sprouts are promising sources of dietary phenolic compounds and sucrose treatment is a good process to produce phenolic-rich mung bean sprouts.


Assuntos
Vigna , Antioxidantes/farmacologia , Metabolômica , Fenóis/metabolismo , Sacarose/metabolismo , Vigna/metabolismo
5.
J Plant Physiol ; 276: 153772, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35872423

RESUMO

To monitor the role of exogenous uniconazole in mitigating chilling stress, this study investigated the effect of foliar spraying of 50 mg L-1 uniconazole on the chilling (15 °C) tolerance of mung beans at the flowering stage. The results showed that uniconazole significantly enhanced the reactive oxygen species (ROS) scavenging ability of mung beans by increasing the superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) activities, the contents of ascorbic acid (AsA) and glutathione (GSH), and the transcription levels of SOD and POD under chilling stress. The uniconazole applications also drastically increased the net photosynthetic rate (Pn), maximum net photosynthetic rate (Pnmax), maximum quantum yield of PSII (Fv/Fm), and the expression levels of the corresponding photosynthetic genes PsbO, PsbP, PsbQ, PsbY, and Psb28. This, in turn, resulted in a higher sucrose content. Meanwhile, uniconazole increased the indole-3-acetic acid (IAA) content but reduced the gibberellin A3 (GA3) content under chilling stress. During the recovery period, the photosynthetic parameters and ROS of plants receiving uniconazole recovered faster, and the antioxidant activity and non-antioxidant contents were higher than in chilling-treated plants. Additionally, chilling stress markedly reduced the pod number per plant, grain number per plant, and 100-seed weight, whereas uniconazole significantly increased the grain weight per plant by 53.47% compared to the chilling treatment. These results strongly suggest that uniconazole can effectively protect mung beans from chilling stress damage by protecting the photosynthetic machinery and enhancing the antioxidant capacity to quench excessive ROS caused by chilling stress. These effects are closely relevant to chilling tolerance enhancement and yield improvement in mung beans.

6.
Stem Cells Int ; 2022: 1157498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782228

RESUMO

The therapy role of mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) in cartilage regeneration has been well studied. Herein, we tried to analyze the role of human umbilical cord MSC- (hUCMSC-) EVs carrying microRNA- (miR-) 181c-5p in repair of cartilage injury. After successful isolation of hUCMSCs, the multidirectional differentiation abilities were analyzed. Then, the EVs were isolated and identified. After coculture of PKH26-labled EVs with bone marrow MSCs (BMSCs), the biological behaviors of which were detected. The relationship between the predicted early posttraumatic osteoarthritis-associated miRNA, miR-181c-5p, and SMAD7 was verified. Gain- and loss-of functions were performed for investing the role of miR-181c-5p and SMAD7 in BMP-induced chondrogenesis in vitro and in vivo. hUCMSC-EVs could be internalized by BMSCs and promote the proliferative, migratory, and chondrogenic differentiation potentials of BMSCs. Additionally, miR-181c-5p could target and inhibit SMAD7 expression to promote the bone morphogenic protein 2- (BMP2-) induced proliferative, migratory, and chondrogenic differentiation potentials of BMSCs. Also, overexpression of SMAD7 inhibited the repairing effect of BMP2, and overexpression of BMP2 and miR-181c-5p further promoted the repair of cartilage injury in vivo. Our present study highlighted the repairing effect of hUCMSC-EVs carrying miR-181c-5p on cartilage injury.

7.
Foods ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804763

RESUMO

Although traditional meat products are highly popular with consumers, the high levels of unsaturated fatty acids and cholesterol present significant health concerns. However, simply using plant oil rich in unsaturated fatty acids to replace animal fat in meat products causes a decline in product quality, such as lower levels of juiciness and hardness. Therefore, it is necessary to develop a fat substitute that can ensure the sensory quality of the product while reducing its fat content. Consequently, using emulsion gels to produce structured oils or introducing functional ingredients has attracted substantial attention for replacing the fat in meat products. This paper delineated emulsion gels into protein, polysaccharide, and protein-polysaccharide compound according to the matrix. The preparation methods and the application of the three emulsion gels as fat substitutes in meat products were reviewed. Since it displayed a unique separation structure, the double emulsion was highly suitable for encapsulating bioactive substances, such as functional oils, flavor components, and functional factors, while it also exhibited significant potential for developing low-fat or functional healthy meat products. This paper summarized the studies involving the utilization of double emulsion and gelled double emulsion as fat replacement agents to provide a theoretical basis for related research and new insight into the development of low-fat meat products.

8.
Open Med (Wars) ; 17(1): 1065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799604

RESUMO

[This corrects the article DOI: 10.1515/med-2022-0453.].

9.
Foods ; 11(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892787

RESUMO

Recombinant plant-based meat alternatives are a kind of product that simulates animal meat with complete structure by assembling plant-tissue protein and other plant-based ingredients. The market is growing rapidly and appears to have a promising future due to the broad culinary applicability of such products. Based on the analysis and summary of the relevant literature in the recent five years, this review summarizes the effects of raw materials and production methods on the structure and quality of specific components (tissue protein and simulated fat) in plant-based meat alternatives. Furthermore, the important roles of tissue and simulated fat as the main components of recombinant plant-based meat alternatives are further elucidated herein. In this paper, the factors affecting the structure and quality of plant-based meat alternatives are analyzed from part to whole, with the aim of contributing to the structural optimization and providing reference for the future development of the plant meat industry.

10.
ACS Omega ; 7(23): 19225-19234, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721932

RESUMO

Hydroxysafflor yellow A (HSYA), a primary active component in Carthami Flos, has been extensively applied in the treatment of cardiometabolic diseases. In this study, a natural deep eutectic solvent composed of glucose and choline chloride with 10% (v/v) of water (90% GCH) was evaluated to enhance the oral absorption of HSYA. Compared with HSYA in water, the relative oral bioavailability of HSYA in 90% GCH was increased to 326.08%. Furthermore, 90% GCH was demonstrated to decrease the mucus viscosity and increase the absorption rate constant of HSYA in the jejunum by 2.95 times. A pharmacodynamic study revealed that HSYA in 90% GCH was more effective in reducing body weight and correcting steatohepatitis and dyslipidemia in high-fat diet-induced obese rats. Serum metabolomics results showed that the correction of serum aromatic amino acid disorder may contribute to the anti-obesity effect of HSYA in 90% GCH. In conclusion, 90% GCH could be a delivery carrier for HSYA against obesity.

11.
Front Pharmacol ; 13: 883898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662724

RESUMO

The herb-pair ginseng-Fuzi (the root of Aconitum carmichaelii) is the material basis of Shenfu prescriptions and is popular in traditional Chinese medicine for the treatment of heart failure, and even shock with severe-stage of COVID-19. A narrow therapeutic window of Fuzi may cause significant regional loss of property and life in clinics. Therefore, systemic elucidation of active components is crucial to improve the safety dose window of Shenfu oral prescriptions. A high performance liquid chromatography-mass spectrometry method was developed for quantification of 10 aconitines in SD rat plasma within 9 min. The limit of detection and the limit of quantification were below 0.032 ng/ml and 0.095 ng/ml, respectively. Furthermore, a systemic comparison with their pharmacokinetic characteristics after oral administration of a safe dosage of 2 g/kg of Fuzi and ginseng-Fuzi decoction for 24 h was conducted. Eight representative diester, monoester, and non-ester aconitines and two new active components (i.e., songorine and indaconitine) were all adopted to elucidating the differences of the pharmacokinetic parameters in vivo. The compatibility of Fuzi and ginseng could significantly increase the in vivo exposure of active components. The terminal elimination half-life and the area under the concentration-time curve of mesaconitine, benzoylaconitine, benzoylmesaconitine, benzoylhypaconitine, and songorine were all increased significantly. The hypaconitine, benzoylmesaconitine, and songorine were regarded as the main active components in vivo, which gave an effective clue for the development of new Shenfu oral prescriptions.

12.
Org Lett ; 24(26): 4734-4738, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749446

RESUMO

Pocahemiketone A, a novel sesquiterpenoid possessing a unique spirocyclic skeleton with a hemiketal endoperoxide unit, was isolated from the essential oil of Pogostemon cablin. Its structure was determined by spectroscopic methods and single-crystal X-ray diffraction analyses. Pocahemiketone A exhibits a significant neuroprotective effect against Aß25-35-induced damage in SH-SY5Y cells by inhibiting NLRP3 inflammasome-mediated pyroptosis and oxidative stress. These results indicate that pocahemiketone A has great potential for use in the treatment of Alzheimer's disease.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Sesquiterpenos , Peptídeos beta-Amiloides , Apoptose , Linhagem Celular Tumoral , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Fragmentos de Peptídeos/farmacologia , Piroptose , Sesquiterpenos/farmacologia , Esqueleto
13.
Bioorg Chem ; 127: 105970, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35749854

RESUMO

Six pairs of enantiomeric phthalide dimers (1-6) were isolated from the rhizomes of Ligusticum chuanxiong. Their structures and absolute configurations were elucidated by NMR spectroscopy, X-ray diffraction analyses, and electronic circular dichroism calculations. Compounds (+)-1 and (-)-1 are new phthalide dimers, featuring two classes of monomeric units (a phthalide and an unusual 2,3-seco-phthalide) with an uncommon linkage (3,6'/8,3'a). Compounds (+)-2 and (-)-3 are also novel phthalide dimers that had not been reported previously. Although (-)-2 and (+)-3 have been successfully isolated in previous studies, their absolute configurations were not unambiguously determined. As for compound 4, it was reported as a racemate in one study, and one of its enantiomers was identified in a subsequent study. Herein, all enantiomeric phthalide dimers were successfully separated, and their absolute configurations were determined. The inhibitory effects of all isolates against lipopolysaccharide-induced nitric oxide production were tested using RAW264.7 cells. The results show that compounds (+)-2, (-)-2, (+)-3, (-)-3, (+)-4, (-)-4, (+)-5, (+)-6, and (-)-6 have inhibitory activities, with compound (+)-5 being the most active (IC50 value of 4.3 ± 1.3 µM).

14.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2689-2697, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718488

RESUMO

For further development and utilization of the germplasm resources of Puerariae Thomsonii Radix and Puerariae Lobatae Radix, this study developed the ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method, high performance liquid chromatography(HPLC) method, and anthrone colorimetry to detect the content of 23 flavonoids, cellulose, hemicellulose, lignin, soluble sugar, and starch in Puerariae Thomsonii Radix and Puerariae Lobatae Radix. The content differences of various chemical components were analyzed. The methodological test of the established UPLC-MS/MS method for the determination of flavonoids showed that each component had satisfactory linearity within the corresponding linear range(R~2≥0.995), and the average spiked recoveries were 94.48%-105.5%. With this method, 17 flavonoids in Puerariae Lobatae Radix and Puerariae Thomsonii Radix were detected. Based on HPLC and anthrone colorimetry, the determination methods of lignocellulose, soluble sugar, and starch were established. According to the determination results, the content of cellulose in Puerariae Thomsonii Radix was significantly lower than that in Puerariae Lobatae Radix, and the content of starch was significantly higher than that in Puerariae Lobatae Radix. The content of hemicellulose, lignin, and soluble sugar showed no significant difference between the two medicinals, and the content of soluble sugar was in highly significantly negative correlation with that of starch. The established methods are simple, rapid, accurate, and sensitive. The results can lay a basis for the evaluation, and comprehensive development and utilization of the germplasm resources of Puerariae Thomsonii Radix and Puerariae Lobatae Radix.


Assuntos
Medicamentos de Ervas Chinesas , Pueraria , Antracenos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Lignina , Pueraria/química , Amido , Açúcares , Espectrometria de Massas em Tandem
15.
Plant Commun ; : 100333, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35643085

RESUMO

The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops.

16.
Cardiovasc Toxicol ; 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739384

RESUMO

Non-human primate monkey model of myocardial ischemic infarction is precious for translational medicine research. Ligation of the left anterior descending (LAD) artery is a common procedure to induce myocardial ischemic infarction. However, the consistency of the myocardial infarction thus generated remains problematic. The present study was undertaken to critically evaluate the monkey model of myocardial ischemic infarction to develop a procedure for a consistent cross-study comparison. Forty male Rhesus monkeys were divided into 4 groups and subjected to LAD artery ligation at different levels along the artery. In addition, the major diagonal branch was selectively ligated parallel to the ligation site of the LAD artery according to the diagonal branch distribution. Analyses of MRI, echocardiography, cardiac hemodynamics, electrocardiography, histopathology, and cardiac injury biomarkers were undertaken to characterize the monkeys with myocardial infarction. Ligation at 40% of the total length of the artery, measured from the apex end, produced variable infarct areas with inconsistent functional alterations. Ligation at 60% or above coupled with selective ligation of diagonal branches produced a consistent myocardial infarction with uniform dysfunction. However, ligation at 70% caused a lethal threat. After a thorough analysis, it is concluded that ligation at 60% of the total length coupled with selective ligation of diagonal branches, enables standardization of the location of occlusion and the subsequent ischemic area, as well as avoids the influence of the diagonal branches, are ideal to produce a consistent monkey model of myocardial ischemic infarction.

17.
J Environ Manage ; 317: 115487, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751282

RESUMO

Rural landscapes offer a variety of cultural ecosystem services (CESs). However, the relationship between rural landscape characteristics and different CESs is still poorly understood. Therefore, this study explored the rural areas of Huzhou city, China, as a case study to assess the main rural landscape characteristics of different CESs based on public preferences. First, 148 scenic spots were classified into four CESs (physical, experiential, intellectual and inspirational), and the public preferences for each scenic spot were determined by combining tourists' scores obtained from social media and government assessment scores. Then, the landscape characteristic indicators were constructed from the natural, infrastructural and sensory perspectives by combining geographic and social media data. Finally, the random forest model was used to evaluate the public preferences for rural landscape characteristics overall and for different CESs. The word frequency analysis showed that, in addition to the nature landscape, infrastructure and service had a strong influence on public preferences. The relationship with rural landscape characteristics varied across different CESs. For physical CESs, the convenience of infrastructure played a greater role than natural landscape characteristics. Experiential CESs, on the other hand, were affected by natural landscape characteristics themselves. Intellectual CESs had higher requirements for both infrastructure and nature. Inspirational CESs included sensory evaluation indicators, in addition to their focus on natural landscape characteristics and infrastructure, indicating that this category of CESs was more concerned with inner experience. The use of social media data has enriched the dimensions of sensory elements and provided new ideas and information supplements for comprehensively understanding different CESs, thus better supporting the management, planning and protection of rural landscapes.


Assuntos
Ecossistema , Mídias Sociais , China , Cidades , Conservação dos Recursos Naturais , Humanos
18.
Front Plant Sci ; 13: 905275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712557

RESUMO

Roots of Euphorbia fischeriana and Euphorbia ebracteolata are recorded as the source plant of traditional Chinese medicine "Langdu," containing active ingredients with anticancer and anti-AIDS activity. However, the two species have specific patterns in the graphic distribution. Compared with E. ehracteolata, E. fischeriana distributes in higher latitude and lower temperature areas and might have experienced cold stress adaptation. To reveal the molecular mechanism of environmental adaptation, RNA-seq was performed toward the roots, stems, and leaves of E. fischeriana and E. ehracteolata. A total of 6,830 pairs of putative orthologs between the two species were identified. Estimations of non-synonymous or synonymous substitution rate ratios for these orthologs indicated that 533 of the pairs may be under positive selection (Ka/Ks > 0.5). Functional enrichment analysis revealed that significant proportions of the orthologs were in the TCA cycle, fructose and mannose metabolism, starch and sucrose metabolism, fatty acid biosynthesis, and terpenoid biosynthesis providing insights into how the two closely related Euphorbia species adapted differentially to extreme environments. Consistent with the transcriptome, a higher content of soluble sugars and proline was obtained in E. fischeriana, reflecting the adaptation of plants to different environments. Additionally, 5 primary or secondary metabolites were screened as the biomarkers to distinguish the two species. Determination of 4 diterpenoids was established and performed, showing jolkinolide B as a representative component in E. fischeriana, whereas ingenol endemic to E. ebracteolate. To better study population genetics, EST-SSR markers were generated and tested in 9 species of Euphorbia. A total of 33 of the 68 pairs were screened out for producing clear fragments in at least four species, which will furthermore facilitate the studies on the genetic improvement and phylogenetics of this rapidly adapting taxon. In this study, transcriptome and metabolome analyses revealed the evolution of genes related to cold stress tolerance, biosynthesis of TCA cycle, soluble sugars, fatty acids, and amino acids, consistent with the molecular strategy that genotypes adapting to environment. The key active ingredients of the two species were quantitatively analyzed to reveal the difference in pharmacodynamic substance basis and molecular mechanism, providing insights into rational crude drug use.

19.
Sci Rep ; 12(1): 9819, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701509

RESUMO

Idiopathic inflammatory myopathies (IIM) is a group of heterogeneous autoimmune systemic diseases, which not only involve skeletal muscle but also myocardium. Cardiac involvement in IIM, which eventually develops into heart failure, is difficult to identify by conventional examinations at early stage. The aim of this study was to investigate if multi-parametric cardiac magnetic resonance (CMR) imaging can screen for early cardiac involvement in IIM, compared with clinical score (Myositis Disease Activity Assessment Tool, MDAAT). Forty-nine patients of IIM, and 25 healthy control subjects with comparable age-range and sex-ratio were enrolled in this study. All subjects underwent CMR examination, and multi-slice short-axis and 4-chamber cine MRI were acquired to evaluate biventricular global circumferential strain (GCS) and global longitudinal strain (GLS). Native T1 and T2 mapping were performed, and post-contrast T1 mapping and LGE were acquired after administration of contrast. A CMR score was developed from native T1 mean and T2 mean for the identification of cardiac involvement in the IIM cohort. Using contingency tables MDAAT and CMR were compared and statistically analyzed using McNemar test. McNemar's test revealed no significant difference between CMR score and MDAAT (p = 0.454). CMR score had potential to screen for early cardiac involvement in IIM patients, compared to MDAAT.


Assuntos
Miosite , Estudos de Casos e Controles , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Miocárdio/patologia , Miosite/diagnóstico por imagem , Miosite/patologia , Valor Preditivo dos Testes
20.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740493

RESUMO

The accumulating evidence demonstrates that the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. In particular, the APOBEC3 family was shown to induce tumor mutations by an aberrant DNA editing mechanism. However, knowledge regarding the reconstitution of the APOBEC family genes across cancer types is still lacking. Here, we systematically analyzed the molecular alterations, immuno-oncological features, and clinical relevance of the APOBEC family in pan-cancer. We found that APOBEC genes were widely and significantly differentially expressed between normal and cancer samples in 16 cancer types, and that their expression levels are significantly correlated with the prognostic value in 17 cancer types. Moreover, two patterns of APOBEC-mediated stratification with distinct immune characteristics were identified in different cancer types, respectively. In ACC, for example, the first pattern of APOBEC-mediated stratification was closely correlated with the phenotype of immune activation, which was characterized by a high immune score, increased infiltration of CD8 T cells, and higher survival. The other pattern of APOBEC-mediated stratification was closely correlated with the low-infiltration immune phenotype, which was characterized by a low immune score, lack of effective immune infiltration, and poorer survival. Further, we found the APOBEC-mediated pattern with low-infiltration immune was also highly associated with the advanced tumor subtype and the CIMP-high tumor subtype (CpG island hypermethylation). Patients with the APOBEC-mediated pattern with immune activation were more likely to have therapeutic advantages in ICB (immunological checkpoint blockade) treatment. Overall, our results provide a valuable resource that will be useful in guiding oncologic and therapeutic analyses of the role of APOBEC family in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...