Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266099

RESUMO

To determine the response of Pacific white shrimp Litopenaeus vannamei to different levels of dietary choline, juvenile white shrimp (1.75 ± 0.09 g) were fed six semi-purified diets supplemented with 0 (control), 2000, 4000, 6000, 8000, and 12,000 mg/kg choline chloride for eight weeks. Growth performance, whole-body composition, serum characteristics and hepatopancreatic antioxidant indexes were evaluated. Meanwhile, serum metabolome and hepatopancreas transcriptome were performed to examine the overall difference in metabolite and gene expression. The weight gain, survival, specific growth rate, condition factor and hepatosomatic index were not affected by dietary choline levels. The shrimp fed 6000 mg/kg dietary choline chloride gained the maximal whole-body crude protein, which was significantly higher than that of shrimp fed with 12,000 mg/kg dietary choline. Serum total cholesterol of shrimp fed 6000 mg/kg dietary choline was higher than that in shrimp fed 4000 mg/kg choline. Dietary choline significantly decreased malondialdehyde content, superoxide dismutase, and glutathione peroxidase activities in shrimp hepatopancreas. Compared with the shrimp fed 6000 mg/kg dietary choline chloride, the glycerophospholipid metabolism pathway was significantly enriched in the shrimp fed 0 mg/kg dietary choline chloride, and the choline content and bile salt-activated lipase-like expression were upregulated. The expression of trypsin-1-like in protein digestion and absorption pathway was significantly downregulated in the shrimp fed 12,000 mg/kg dietary choline chloride. Apolipoprotein D might be a potential biomarker in shrimp, and dietary choline played an important role in lipid metabolism, especially in the reduction of oxidative damage in L. vannamei. Based on the results of weight gain and degree of oxidative damage, 1082 mg/kg dietary choline could meet the growth requirement of L. vannamei, but 2822 mg/kg dietary choline was needed to reduce peroxidation damage.

2.
Fish Shellfish Immunol ; 100: 137-145, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151686

RESUMO

Cobalt (Co) is an important component of vitamin B12, but is toxic to aquatic animals at a high level. In this study, the Pacific white shrimp, Litopenaeus vannamei were exposed to three Co concentrations (0, 100, and 1000 µg/L) for 4 weeks. The survival and condition factor in shrimp exposed to the Co treatments were not different from the control, but the shrimp exposed to 100 µg Co/L gained more weight than in other two groups, and the shrimp exposed to 1000 µg Co/L gained less weight than in other groups. The SOD and GSH-PX activities were higher in shrimp exposed to 100 µg Co/L, but lower in the shrimp exposed to 100 µg Co/L compared with the control, respectively. The MDA contents in the hepatopancreas decreased in the 100 µg Co/L, but increased in the 1000 µg Co/L. The serum lysozyme decreased with ambient cobalt, was lower in the shrimp exposed to 1000 µg Co/L than in other two groups. The expression of C-type lectin 3 was down-regulated by Co concentrations. The Toll and immune deficiency in shrimp exposed to 100 µg Co/L was higher than in other two groups. The mucin-1 was lower in the 1000 µg Co/L group than in other two groups, but mucin-2 and mucin-5AC were higher in the 1000 µg Co/L group than in the control. With increasing Co concentration, Shannon and Simpson indexes of the intestinal microbial communities were decreased. The abundance of pathogenic bacteria (Ruegeria and Vibrio) increased in both Co groups. This study indicates that chronic exposure to waterborne cobalt could affect growth, cause oxidative stress, stimulate the immune response, damage intestinal histology, and reshape intestinal microbiota community L. vannamei.

3.
Front Physiol ; 10: 1087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507450

RESUMO

The Pacific white shrimp (Litopenaeus vannamei), a euryhaline penaeid species, can tolerate a wide range of salinities, but little is known on its strategies to cope with low salinity fluctuations from the aspect of lipidomics. Thus, in this study, L. vannamei were grown in two different salinities [3 and 30‰ (control)] for 8 weeks, and then an liquid chromatography (LC)-mass spectrometry (MS)-based lipidomics analysis was performed to reveal the lipid profile differences in gill and muscle. L. vannamei under low salinity had lower weight gain and condition factor than the control shrimp at 30‰, but no differences were found in survival and hepatopancreas index. A higher number of differential lipid metabolites were identified in gill than in muscle in L. vannamei at salinity 3‰ relative to the control shrimp at salinity of 30‰ (159 versus 37), which belonged to 11 and 6 lipids classes, respectively. Of these lipids, phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidylethanolamine (PE), and triglyceride (TG) were the main lipids in both shrimp gill and muscle, regardless of salinities. Compared with the control shrimp at salinity 30‰, the percentage of PC significantly reduced, but TG and PA significantly increased in gill of shrimp at salinity 3‰. Moreover, the relative fatty acid abundances showed significant changes in L. vannamei between the two salinity groups, but the patterns of the changes were complex and were fatty acid dependent. Neither lipid nor fatty acid composition in muscle was affected by salinity. Further pathway analysis showed that these metabolites were closely related to lipid and fatty acid metabolic pathways. All the findings in this study reveal that the lipid variations are closely related to bio-membrane structure, mitochondrial function, energy supply, or organic osmolyte contents in hemolymph for improving osmoregulatory capacity of L. vannamei under low salinity.

4.
Ecotoxicol Environ Saf ; 169: 76-84, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30423510

RESUMO

The impacts of triphenyltin (TPT) on ecological health have been of great concern due to their widespread use and ubiquity in aquatic ecosystems. However, little is known about the effects of TPT on the reproductive behaviors of fishes. Therefore, the present study was conducted to investigate the effects of TPT at environmentally relevant concentrations (0, 1 and 10 ng Sn/L) on the mating behaviors and the attractiveness to females during mating in male guppies (Poecilia reticulata). The results showed that TPT exposure disturbed the mating behaviors; the TPT-exposed male fish performed more sneaking attempts, but no changes in sigmoid courtship were displayed. The increases in sneaking attempts might be related to increases in testosterone levels induced by TPT exposure. In the context of a competing male, the TPT-exposed males were less attractive to females during mating. The decreases in attractiveness might be related to decreases in carotenoid-based coloration, shown as decreases in caudal fin redness values and skin carotenoid contents. In addition, TPT-induced total antioxidant capacities, the activities of superoxide dismutase and catalase, and the contents of malondialdehyde in liver and intestinal tissues indicated increases in oxidative stress. Both oxidative stress and coloration are linked to carotenoids. Thus, we speculated that the TPT-exposed males might use carotenoids to cope with increases in oxidative stress at the expense of carotenoid-based coloration. The disruption of mating behaviors and the decrease in attractiveness to females in male fish could result in reproductive failure. The present study underscores the importance of using behavioral tests as a sensitive tool in assessing the impact of pollutants present in aquatic environments.


Assuntos
Compostos Orgânicos de Estanho/toxicidade , Comportamento Sexual Animal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Carotenoides/metabolismo , Feminino , Masculino , Poecilia/metabolismo , Poecilia/fisiologia , Reprodução/efeitos dos fármacos
5.
Fish Shellfish Immunol ; 82: 9-16, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30075246

RESUMO

It is well known that lysozymes are key proteins to teleosts in the innate immune system and possess high bactericidal properties. In the present study, a g-type lysozyme gene was cloned from Microptenus salmoides. The g-type sequence consisted of 582 bp, which translated into a 193 amino acid (AA) protein (GenBank accession no: MH087462). The predicted molecular weight and theoretical isoelectric point were 21.36 kDa and 6.91 respectively and no signal peptide was observed. The qRT-PCR analysis showed that the g-type lysozyme gene was differentially expressed in various tissues under normal conditions and the highest g-type lysozyme level was observed in liver, gill and spleen while there seemed to be low expression in the muscle, heart and head-kidney. The expression of g-type lysozyme was differentially upregulated in the spleen, gill and intestine after stimulation with heat stress and Aeromonas hydrophila (A. hydrophila). Under heat stress and A. hydrophila injection, the g-type lysozyme mRNA levels all in spleens, gill and intestine tissues increased significantly (P < 0.05), with the maximum levels attained at 12 h, 24 h (or 12 h) and 24 h. Thereafter, they all decreased significantly (P < 0.01) and the expression in gill returned to nearly the basal value within 72 h. Those results suggested that g-type lysozyme was involved in the immune response to heat stress and bacterial challenge. The cloning and expression analysis of the g-type lysozyme provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides. The g-type lysozyme gene perhaps also played an important role in the immune responses against bacterial invasion.


Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Resposta ao Choque Térmico , Imunidade Inata/genética , Muramidase/genética , Muramidase/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Muramidase/química , Filogenia , Alinhamento de Sequência/veterinária
6.
Data Brief ; 18: 1193-1195, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900293

RESUMO

RNA-sequencing was used to identify sex-biased gene expression in brains of rare minnow (Gobiocypris rarus) by comparing transcriptomic profiles between females and males. Furthermore, transcriptomic responses to 10 ng/L tributyltin (TBT) in both male and female brains were also investigated to understand whether TBT affects the identified sex-biased genes. Differentially expressed genes (DEGs) were identified using the IDEG6 web tool. In this article, we presented male- and female-biased DEGs, and up-regulated and down-regulated DEGs after TBT exposure. The raw reads data supporting the present analyses has been deposited in NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra) with accession number PRJNA376634. The data presented in this article are related to the research article entitled "Transcriptomic analyses of sexual dimorphism of rare minnow (G. rarus) brains and effects of tributyltin exposure" (doi: 10.1016/j.ecoenv.2018.02.049).

7.
Ecotoxicol Environ Saf ; 156: 18-24, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29524779

RESUMO

The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity.


Assuntos
Cyprinidae/genética , Caracteres Sexuais , Transcriptoma/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Cyprinidae/metabolismo , Feminino , Perfilação da Expressão Gênica , Transdução de Sinal Luminoso/efeitos dos fármacos , Masculino , Análise de Sequência de RNA
8.
Aquat Toxicol ; 188: 109-118, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500902

RESUMO

Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored.


Assuntos
Cyprinidae/metabolismo , Fígado/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Vitamina A/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Sequência de Bases , Cyprinidae/genética , Fígado/metabolismo , Masculino , RNA/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...