Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Toxicol Appl Pharmacol ; 402: 115117, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634519

RESUMO

Solute carrier family 13 member 5 (SLC13A5) is an uptake transporter mainly expressed in the liver and transports citrate from blood circulation into hepatocytes. Accumulating evidence suggests that SLC13A5 is involved in hepatic lipogenesis, cell proliferation, epilepsy, and bone development in mammals. However, the molecular mechanisms behind SLC13A5-mediated physiological/pathophysiological changes are largely unknown. In this regard, we conducted a differential proteome analysis in HepG2 and SLC13A5-knockdown (KD) HepG2 cells. A total of 3826 proteins were quantified and 330 proteins showed significant alterations (fold change ≥1.5; p < .05) in the knockdown cells. Gene ontology enrichment analysis reveals that 38 biological processes were significantly changed, with ketone body biosynthetic process showing the most significant upregulation following SLC13A5-KD. Catalytic activity and binding activity were the top two molecular functions associated with differentially expressed proteins, while HMG-CoA lyase activity showed the highest fold enrichment. Further ingenuity pathway analysis predicted 40 canonical pathways and 28 upstream regulators (p < .01), of which most were associated with metabolism, cell proliferation, and stress response. In line with these findings, functional validation demonstrated increased levels of two key ketone bodies, acetoacetate and ß-hydroxybutyrate, in the SLC13A5-KD cells. Additional experiments showed that SLC13A5-KD sensitizes HepG2 cells to cellular stress caused by a number of chemotherapeutic agents. Together, our findings demonstrate that knockdown of SLC13A5 promotes hepatic ketogenesis and enhances cellular stress response in HepG2 cells, suggesting a potential role of this transporter in metabolic disorders and liver cancer.

3.
J Clin Pharmacol ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542790

RESUMO

A treatment gap exists for pediatric patients with renal impairment. Alterations in renal clearance and metabolism of drugs render standard dosage regimens inappropriate and may lead to drug toxicity, but these studies are not routinely conducted during drug development. The objective of this study was to examine the clinical evidence behind current renal impairment dosage recommendations for pediatric patients in a standard pediatric dosing handbook. The sources of recommendations and comparisons included the pediatric dosing handbook (Lexicomp), the U.S. Food and Drug Administration-approved manufacturer's labels, and published studies in the literature. One hundred twenty-six drugs in Lexicomp had pediatric renal dosing recommendations. Only 14% (18 of 126) of Lexicomp pediatric renal dosing recommendations referenced a pediatric clinical study, and 15% of manufacturer's labels (19 of 126) described specific dosing regimens for renally impaired pediatric patients. Forty-two products had published information on pediatric renal dosing, but 19 (45%) were case studies. When pediatric clinical studies were not referenced in Lexicomp, the renal dosing recommendations followed the adult and pediatric dosing recommendations on the manufacturer's label. Clinical evidence in pediatric patients does not exist for most renal dosing recommendations in a widely used pediatric dosing handbook, and the adult renal dosing recommendations from the manufacturer's label are currently the primary source of pediatric renal dosing information.

4.
Clin Infect Dis ; 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32435791

RESUMO

Translation of in vitro antiviral activity to the in vivo setting is crucial to identify potentially effective dosing regimens of hydroxychloroquine. In vitro EC50/EC90 values for hydroxychloroquine should be compared to the in vivo free extracellular tissue concentration, which is similar to the free plasma hydroxychloroquine concentration.

5.
CPT Pharmacometrics Syst Pharmacol ; 9(6): 310-321, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32441889

RESUMO

Creatinine is the most common clinical biomarker of renal function. As a substrate for renal transporters, its secretion is susceptible to inhibition by drugs, resulting in transient increase in serum creatinine and false impression of damage to kidney. Novel physiologically based models for creatinine were developed here and (dis)qualified in a stepwise manner until consistency with clinical data. Data from a matrix of studies were integrated, including systems data (common to all models), proteomics-informed in vitro-in vivo extrapolation of all relevant transporter clearances, exogenous administration of creatinine (to estimate endogenous synthesis rate), and inhibition of different renal transporters (11 perpetrator drugs considered for qualification during creatinine model development and verification on independent data sets). The proteomics-informed bottom-up approach resulted in the underprediction of creatinine renal secretion. Subsequently, creatinine-trimethoprim clinical data were used to inform key model parameters in a reverse translation manner, highlighting best practices and challenges for middle-out optimization of mechanistic models.

6.
CPT Pharmacometrics Syst Pharmacol ; 9(5): 282-293, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32410382

RESUMO

Creatinine is widely used as a biomarker of glomerular filtration, and, hence, renal function. However, transporter-mediated secretion also contributes to its renal clearance, albeit to a lesser degree. Inhibition of these transporters causes transient serum creatinine elevation, which can be mistaken as impaired renal function. The current study developed mechanistic models of creatinine kinetics within physiologically based framework accounting for multiple transporters involved in creatinine renal elimination, assuming either unidirectional or bidirectional-OCT2 transport (driven by electrochemical gradient). Robustness of creatinine models was assessed by predicting creatinine-drug interactions with 10 perpetrators; performance evaluation accounted for 5% intra-individual variability in serum creatinine. Models showed comparable predictive performances of the maximum steady-state effect regardless of OCT2 directionality assumptions. However, only the bidirectional-OCT2 model successfully predicted the minimal effect of ranitidine. The dynamic nature of models provides clear advantage to static approaches and most advanced framework for evaluating interplay between multiple processes in creatinine renal disposition.

7.
AAPS J ; 22(2): 52, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107671

RESUMO

Biologic-device combination products using prefilled syringes (PFSs) and autoinjectors (AIs) are popular for biological products administered subcutaneously. Pharmacokinetic (PK) comparability studies commonly provide the scientific data to support introduction of AI presentations via bridging with PFS. A survey of biological products approved by FDA's Center for Drug Evaluation and Research identified 17 biologics license applications (BLAs) with both PFS and AI presentations for subcutaneous (SC) administration, including 16 approved on February 1, 2018, and one with AI presentation under review. A systematic review on the device parameters and the PK comparability studies bridging the two presentations was conducted. Subsequently, whether device parameters or the PK study design may have influenced the PK comparability study results was evaluated. The reported device parameters for AI and PFS are generally consistent across BLAs, whereas the approach to assess PK comparability varied, including the study design. Most PK comparability studies met bioequivalence (BE) criteria. Upon inspection of the studies that did not meet BE criteria, injection depth of AI and the injection site for either AI or PFS were identified as potential influencing factors to the outcome of PK comparability study. This study represents an initial attempt to identify the potential influencing factors on device bridging, including the characteristics of the device and the clinical pharmacology study. These findings may inform the combination product development strategy, specifically design considerations for device and PK comparability studies.

8.
Pharm Res ; 37(2): 26, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907698

RESUMO

PURPOSE: The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS: BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS: Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS: Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bile/efeitos dos fármacos , Metformina/efeitos adversos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Colestase/induzido quimicamente , Colestase/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo
10.
CPT Pharmacometrics Syst Pharmacol ; 9(1): 21-28, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31652029

RESUMO

The use of computational models in drug development has grown during the past decade. These model-informed drug development (MIDD) approaches can inform a variety of drug development and regulatory decisions. When used for regulatory decision making, it is important to establish that the model is credible for its intended use. Currently, there is no consensus on how to establish and assess model credibility, including the selection of appropriate verification and validation activities. In this article, we apply a risk-informed credibility assessment framework to physiologically-based pharmacokinetic modeling and simulation and hypothesize this evidentiary framework may also be useful for evaluating other MIDD approaches. We seek to stimulate a scientific discussion around this framework as a potential starting point for uniform assessment of model credibility across MIDD. Ultimately, an overarching framework may help to standardize regulatory evaluation across therapeutic products (i.e., drugs and medical devices).

12.
J Clin Pharmacol ; 59 Suppl 1: S56-S69, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502692

RESUMO

Developmental changes in the biological processes involved in the disposition of drugs, such as membrane transporter expression and activity, may alter the drug exposure and clearance in pediatric patients. Physiologically based pharmacokinetic (PBPK) models take these age-dependent changes into account and may be used to predict drug exposure in children. As a result, this mechanistic-based tool has increasingly been applied to improve pediatric drug development. Under the Prescription Drug User Fee Act VI, the US Food and Drug Administration has committed to facilitate the advancement of PBPK modeling in the drug application review process. Yet, significant knowledge gaps on developmental biology still exist, which must be addressed to increase the confidence of prediction. Recently, more data on ontogeny of transporters have emerged and supplied a missing piece of the puzzle. This article highlights the recent findings on the ontogeny of transporters specifically in the intestine, liver, and kidney. It also provides a case study that illustrates the utility of incorporating this information in predicting drug exposure in children using a PBPK approach. Collaborative work has greatly improved the understanding of the interplay between developmental physiology and drug disposition. Such efforts will continue to be needed to address the remaining knowledge gaps to enhance the application of PBPK modeling in drug development for children.

14.
Curr Drug Metab ; 20(8): 621-632, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31288715

RESUMO

BACKGROUND: Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS: We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS: We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION: Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Animais , Colestase/induzido quimicamente , Humanos
17.
Clin Pharmacol Ther ; 106(5): 1083-1092, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127606

RESUMO

Human renal membrane transporters play key roles in the disposition of renally cleared drugs and endogenous substrates, but their ontogeny is largely unknown. Using 184 human postmortem frozen renal cortical tissues (preterm newborns to adults) and a subset of 62 tissue samples, we measured the mRNA levels of 11 renal transporters and the transcription factor pregnane X receptor (PXR) with quantitative real-time polymerase chain reaction, and protein abundance of nine transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring, respectively. Expression levels of p-glycoprotein, urate transporter 1, organic anion transporter 1, organic anion transporter 3, and organic cation transporter 2 increased with age. Protein levels of multidrug and toxin extrusion transporter 2-K and breast cancer resistance protein showed no difference from newborns to adults, despite age-related changes in mRNA expression. Multidrug and toxin extrusion transporter 1, glucose transporter 2, multidrug resistance-associated protein 2, multidrug resistance-associated protein 4 (MRP4), and PXR expression levels were stable. Using immunohistochemistry, we found that MRP4 localization in pediatric samples was similar to that in adult samples. Collectively, our study revealed that renal drug transporters exhibited different rates and patterns of maturation, suggesting that renal handling of substrates may change with age.

20.
Clin Transl Sci ; 12(2): 113-121, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30740886

RESUMO

The recently enacted Prescription Drug User Fee Act (PDUFA) VI includes in its performance goals "enhancing regulatory science and expediting drug development." The key elements in "enhancing regulatory decision tools to support drug development and review" include "advancing model-informed drug development (MIDD)." This paper describes (i) the US Food and Drug Administration (FDA) Office of Clinical Pharmacology's continuing efforts in developing quantitative clinical pharmacology models (disease, drug, and clinical trial models) to advance MIDD, (ii) how emerging novel tools, such as organ-on-a-chip technologies or microphysiological systems, can provide new insights into physiology and disease mechanisms, biomarker identification and evaluation, and elucidation of mechanisms of adverse drug reactions, and (iii) how the single organ or linked organ microphysiological systems can provide critical system parameters for improved physiologically-based pharmacokinetic and pharmacodynamic evaluations. Continuous public-private partnerships are critical to advance this field and in the application of these new technologies in drug development and regulatory review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA