Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 287(Pt 3): 132248, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543899

RESUMO

The conflict between climate change and growing global energy demand is an immense sustainability challenge that requires noteworthy scientific and technological developments. Recently the importance of microbial fuel cell (MFC) on this issue has seen profound investigation due to its inherent ability of simultaneous wastewater treatment, and power production. However, the challenges of economy-related manufacturing and operation costs should be lowered to achieve positive field-scale demonstration. Also, a variety of different field deployments will lead to improvisation. Hence, this review article discusses the possibility of integration of MFC technology with various technologies of recent times leading to advanced sustainable MFC technology. Technological innovation in the field of nanotechnology, genetic engineering, additive manufacturing, artificial intelligence, adaptive control, and few other hybrid systems integrated with MFCs is discussed. This comprehensive and state-of-the-art study elaborates hybrid MFCs integrated with various technology and its working principles, modified electrode material, complex and easy to manufacture reactor designs, and the effects of various operating parameters on system performances. Although integrated systems are promising, much future research work is needed to overcome the challenges and commercialize hybrid MFC technology.


Assuntos
Fontes de Energia Bioelétrica , Inteligência Artificial , Eletricidade , Eletrodos , Tecnologia , Águas Residuárias
2.
Inorg Chem ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747616

RESUMO

Rational design and construction of the finest electrocatalytic materials are important for improving the performance of electrochemical sensors. Spinel bioxides based on cobalt manganate (CoMn2O4) are of particular importance for electrochemical sensors due to their excellent catalytic performance. In this study, three-dimensional CoMn2O4 with the petal-free, flowerlike structure is synthesized by facile hydrothermal and calcination methods for the electrochemical sensing of roxarsone (RXS). The effect of calcination temperature on the characteristics of CoMn2O4 was thoroughly studied by in-depth electron microscopic, spectroscopic, and analytical methods. Compared to previous reports, CoMn2O4-modified screen-printed carbon electrodes display superior performance for the RXS detection, including a wide linear range (0.01-0.84 µM; 0.84-1130 µM), a low limit of detection (0.002 µM), and a high sensitivity (33.13 µA µM-1 cm-2). The remarkable electrocatalytic performance can be attributed to its excellent physical properties, such as good conductivity, hybrid architectures, high specific surface area, and rapid electron transportation. More significantly, the proposed electrochemical sensor presents excellent selectivity, good stability, and high reproducibility. Besides, the detection of RXS in river water samples using the CoMn2O4-based electrochemical sensor shows satisfactory recovery values in the range of 98.00-99.80%. This work opens a new strategy to design an electrocatalyst with the hybrid architecture for high-performance electrochemical sensing.

3.
Chemosphere ; 288(Pt 2): 132446, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34653488

RESUMO

The research on microbial fuel cells (MFCs) is rising tremendously but its commercialization is restricted by several microbiological, material, and economic constraints. Hence, a systematic assessment of the research articles published previously focusing on potential upcoming directions in this field is necessary. A detailed multi-perspective analysis of various techniques for enhancing the efficiency of MFC in terms of electric power production is presented in this paper. A brief discussion on the central aspects of different issues are preceded by an extensive analysis of the strategies that can be introduced to optimize power generation and reduce energy losses. Various applications of MFCs in a broad spectrum ranging from biomedical to underwater monitoring rather than electricity production and wastewater treatment are also presented followed by relevant possible case studies. Mathematical modeling is used to understand the concepts that cannot be understood experimentally. These methods relate electrode geometries to microbiological reactions occurring inside the MFC chamber, which explains the system's behavior and can be improved. Finally, directions for future research in the field of MFCs have been suggested. This article can be beneficial for engineers and researchers concerned about the challenges faced in the application of MFC.

4.
Sensors (Basel) ; 21(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577327

RESUMO

Toxic and nontoxic volatile organic compound (VOC) gases are emitted into the atmosphere from certain solids and liquids as a consequence of wastage and some common daily activities. Inhalation of toxic VOCs has an adverse effect on human health, so it is necessary to monitor their concentration in the atmosphere. In this work, we report on the fabrication of inorganic nanotube (INT)-tungsten disulfide, paper-based graphene-PEDOT:PSS sheet and WS2 nanotube-modified conductive paper-based chemiresistors for VOC gas sensing. The WS2 nanotubes were fabricated by a two-step reaction, that is oxide reduction and sulfurization, carried out at 900 °C. The synthesized nanotubes were characterized by FE-SEM, EDS, XRD, Raman spectroscopy, and TEM. The synthesized nanotubes were 206-267 nm in diameter. The FE-SEM results show the length of the nanotubes to be 4.5-8 µm. The graphene-PEDOT:PSS hybrid conductive paper sheet was fabricated by a continuous coating process. Then, WS2 nanotubes were drop-cast onto conductive paper for fabrication of the chemiresistors. The feasibility and sensitivity of the WS2 nanotube-modified paper-based chemiresistor were tested in four VOC gases at different concentrations at room temperature (RT). Experimental results show the proposed sensor to be more sensitive to butanol gas when the concentration ranges from 50 to 1000 ppm. The limit of detection (LOD) of this chemiresistor for butanol gas was 44.92 ppm. The WS2 nanotube-modified paper-based chemiresistor exhibits good potential as a VOC sensor with the advantages of flexibility, easy fabrication, and low fabrication cost.


Assuntos
Nanotubos , Compostos Orgânicos Voláteis , Dissulfetos , Humanos , Limite de Detecção , Tungstênio
6.
Dalton Trans ; 50(21): 7212-7222, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075924

RESUMO

Developing a non-precious metal electrocatalyst for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class of layered cation ordered single perovskite oxides (Pr0.9Ca0.1Co0.8Fe0.2O3-δ) with an optimum ratio of the Co4+/Co3+ oxidation state and oxygen vacancy for oxygen electrode reactions. Catalytic activities are investigated as a function of electronic structure and surface composition. A moderate amount of Ca and Fe dopants keeps the B-site Co cations at a higher oxidation state (Co4+) and generates a vast amount of an oxygen defect rich structure. The improved performance in the ORR and OER is explained by the increase in the sites of Co4+ cations, a state responsible for enhanced catalytic activity. A hypothesis for how doped Ca fraction affects the adsorbed oxygen species and contributes to catalytic activity is discussed. This work sheds light on the influence of crystal structure on the catalytic property and reports that ORR and OER activities are affected not only by oxygen vacancy concentration but also by the oxidation state of the transition metal in the perovskite oxide.

7.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545601

RESUMO

This paper deals with the tribological study of the laser remelted surfaces of the ECAP-processed AZ61 magnesium alloy and AZ61-Al2O3 metal matrix composite with 10 wt.% addition of Al2O3 nanoparticles. The study included the experimental optimization of the laser surface remelting conditions for the investigated materials by employing a 400 W continual wave fiber laser source. Tribological tests were performed in a conventional "ball-on-disc" configuration with a ceramic ZrO2 ball under a 5 N normal load and a sliding speed of 100 mm/s. The results showed that both the incorporation of Al2O3 nanoparticles and the applied laser treatments led to recognizable improvements in the tribological properties of the studied AZ61-Al2O3 composites in comparison with the reference AZ61 alloy. Thus, the best improvement has been obtained for the laser modified AZ61-10 wt.% Al2O3 nanocomposite showing about a 48% decrease in the specific wear rate compared to the laser untreated AZ61 base material.

8.
Talanta ; 116: 704-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148464

RESUMO

Point-of-care diagnostics (POCD) for blood coagulation benefit patients on-site, but available POCD devices are too expensive to be affordable in many countries. Optically based methodologies are cheap and reliable, and have been exploited in bench-top coagulometers to monitor coagulation with plasma, but not whole blood, which contains cellular components that cause massive interference. However, the POCD testing of whole blood gives a more accurate picture of physiological conditions than does testing plasma. In this study, a portable device for performing the prothrombin time (PT) test was designed, comprising an optical sensor, an electrical processing and control circuit to monitor the optical changes that occurred during the coagulation process in whole blood. The PT was when the slope of the first-order derivative of the coagulation curve, recorded from real-time light transmittance signals, was maximal. The POCD PT testing of 167 samples revealed that 153 (91.6%) were successfully detected and the results were highly consistent with the results of whole blood international normalized ratio (INR) (r=0.985, p<0.001) by the conventional manual method and those of plasma INR (r=0.948, p<0.001) with the ACL TOP 700 bench-top coagulometer (Beckman Colter). Hematological parameters were further analyzed, revealing that fibrinogen titers (p=0.036), red blood cell numbers (p=0.017) and distribution of red cell width (p=0.015) affected the effectiveness of the current POCD PT determination. Furthermore, a highly positive correlation was revealed between fibrinogen titers and the maximum speed of change in transmittance (v/t) (r=0.805, p<0.001), suggesting that fibrinogen might be evaluated simultaneously in this POCD testing. In conclusion, the proposed portable optical-based device performs the highly sensitive and accurate determination of whole blood PT and has commercial potential because of its small volume and low fabrication cost.


Assuntos
Técnicas Biossensoriais/instrumentação , Coagulação Sanguínea , Dispositivos Ópticos , Tempo de Protrombina/instrumentação , Anticoagulantes/química , Ácido Cítrico/química , Contagem de Eritrócitos , Índices de Eritrócitos , Fibrinogênio/química , Humanos , Raios Infravermelhos , Coeficiente Internacional Normatizado , Tempo de Protrombina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...