Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
1.
Neurosci Bull ; 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502213

RESUMO

Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer's disease and Parkinson's disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31461940

RESUMO

Floods not only provide a large amount of water resources, but they also cause serious disasters. Although there have been numerous hydrological studies on flood processes, most of these investigations were based on rainfall-type floods in plain areas. Few studies have examined high temporal resolution snowmelt floods in high-altitude mountainous areas. The Soil Water Assessment Tool (SWAT) model is a typical semi-distributed, hydrological model widely used in runoff and water quality simulations. The degree-day factor method used in SWAT utilizes only the average daily temperature as the criterion of snow melting and ignores the influence of accumulated temperature. Therefore, the influence of accumulated temperature on snowmelt was added by increasing the discriminating conditions of rain and snow, making that more suitable for the simulation of snowmelt processes in high-altitude mountainous areas. On the basis of the daily scale, the simulation of the flood process was modeled on an hourly scale. This research compared the results before and after the modification and revealed that the peak error decreased by 77% and the time error was reduced from ±11 h to ±1 h. This study provides an important reference for flood simulation and forecasting in mountainous areas.

3.
Biosens Bioelectron ; 142: 111531, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401228

RESUMO

The use of new functional two-dimensional nanomaterials for construction of advanced biosensors has attracted great attention. Herein, we report an electrochemical DNA (E-DNA) biosensor to detect gliotoxin based on DNA nanostructure-modified MXene (Ti3C2) nanosheets. Tetrahedral DNA nanostructures (TDNs) were facilely immobilized onto the surface of MXene nanosheets through coordination interactions between the phosphate groups on DNA and titanium, which avoids cumbersome and expensive modification of DNA probes. MXene nanosheets possess large surface area to modify a large number of DNA probes and excellent conductivity to facilitate the electron transfer between electrochemical species and the underlying electrode surface. Meanwhile, the unique configuration of TDN enables efficient and rapid binding of target molecules onto electrode surface, thereby producing amplified electrochemical signals. Through combining the merits of the two nanomaterials, the proposed sensor exhibits a wide detection range from 5 pM to 10 nM with a low limit of detection (LOD) of 5 pM. We believe that this work opens a new avenue for development of MXene-based E-DNA biosensors and could be further extended to detect other mycotoxins.

4.
Anal Bioanal Chem ; 411(24): 6463-6473, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31448387

RESUMO

Thiol molecules play a significant role in cellular structures and functions. These molecules are distributed in cells unevenly at the subcellular level. Disturbance of cellular thiols has been associated with various diseases and disorders. Probes that are able to detect subcellular thiol density in live cells are valuable tools in determining thiols' roles at the subcellular level. Lysosomes are a subcellular organelle involved in the degradation of macromolecules through the action of proteolytic enzymes. The degradation not only serves as a way to dispose of unwanted macromolecules but also a way to regulate a variety of cellular functions such as autophagy, endocytosis, and phagocytosis to maintain cell homeostasis. A probe that can detect lysosomal thiols in live cells will be useful in unveiling the roles of thiols in lysosomes. Currently, limited probes are available to detect lysosomal thiols in live cells. We would like to report 4,4'-{[7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl)]bis(oxy))bis(naphthalene-2,7-disulfonicacid) (TBONES) as a thiol-specific fluorogenic agent for lysosomal thiol imaging in live cells through fluorescence microscopy. TBONES exhibits no fluorescence and readily reacts with non-protein thiols to form fluorescent thiol adducts with λex = 400 nm and λem = 540 nm. No reaction was observed when TBONES was mixed with compounds containing nucleophilic functional groups other than thiols such as -OH, -NH2, and -COOH. No reaction was observed either when TBONES was mixed with protein thiols. When incubated with cells, TBONES selectively and effectively imaged lysosomal thiols in live cells. Imaging of lysosomal thiols was confirmed by a co-localization experiment with LysoTracker™ Blue DND-22.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31449009

RESUMO

The segmentation of brain tissue in MRI is valuable for extracting brain structure to aid diagnosis, treatment and tracking the progression of different neurologic diseases. Medical image data are volumetric and some neural network models for medical image segmentation have addressed this using a 3D convolutional architecture. However, this volumetric spatial information has not been fully exploited to enhance the representative ability of deep networks, and these networks have not fully addressed the practical issues facing the analysis of multimodal MRI data. In this paper, we propose a spatially-weighted 3D network (SW-3D-UNet) for brain tissue segmentation of single-modality MRI, and extend it using multimodality MRI data. We validate our model on the MRBrainS13 and MALC12 datasets. This unpublished model ranked first on the leaderboard of the MRBrainS13 Challenge.

6.
Shanghai Kou Qiang Yi Xue ; 28(2): 165-170, 2019.
Artigo em Chinês | MEDLINE | ID: mdl-31384902

RESUMO

PURPOSE: To evaluate preoperative anxiety and postoperative quality of life in patients with periodontal mucogingival surgery, and provide a theoretical basis for preventing preoperative anxiety and improving postoperative quality of life in mucogingival surgery. METHODS: According to the inclusion and exclusion criteria, 26 patients with mucogingival surgery were randomly selected, including 13 cases undergoing free gingival graft and 13 cases undergoing subepithelial connective tissue graft. All patients were asked to answer the following questionnaires which included self-rating anxiety scale (SAS), modified dental anxiety scale (MDAS), pain evaluation using visual pain scale (VAS), clinical performance evaluation (swelling, bleeding, nausea, oral odor), and oral function evaluation (chewing, speaking, sleeping, working). Data analysis was performed using SPSS 18.0 software package. RESULTS: The preoperative SAS score was 44.33±11.99, 4 patients had anxiety, accounting for 15.38%. The preoperative MDSA score was 9.85±2.41, 4 patients had anxiety, accounting for 15.38%. The VAS values at 1 day, 3 days, 5 days, 7 days, and 10 days after surgery were moderate pain (4.54±1.32), mild pain (3.31±1.31), mild pain (2.00±1.14), and painless( 0.70±0.72), painless (0.08±0.27). The VAS values at 1 day, 3 days, and 5 days after FGG were greater than those after CTG (P<0.05).The most common discomforts after mucogingival surgery were swelling, bleeding, disturbance in chewing and speech. Swelling, disturbance in chewing and speech persisted until 7 days after surgery, and bleeding continued until 5 days after surgery. The postoperative discomfort of FGG was significantly higher than that of CTG. CONCLUSIONS: Four had preoperative anxiety prior to mucogingival surgery. The main clinical symptoms after surgery were moderate to mild pain, swelling, bleeding, disturbance in chewing and speech within 1-7 days after surgery. The effect of CTG on the quality of life of patients was significantly less than that of FGG.

7.
Anal Chim Acta ; 1080: 189-195, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31409469

RESUMO

Direct and absolute analysis of microRNAs (miRNAs) in complex media (e.g., human serum) is still a big challenge due to the issues with off-analyte absorption, low sensitivity and specificity. In this work, we have fabricated the erythrocyte membrane-biointerfaced spherical nucleic acids (EMSNAs) for miRNA assay, which not only enables tailor-engineered signal amplification but also exhibits anti-interference property. As a consequence, it is possible to achieve a single-step quantification of miRNAs in complex media without the process of enzymatic amplification, which can vastly simplify the detection procedure. Experimental results reveal that the assay permits ultrasensitive quantification of miR-141, with a limit of detection down to 33.9 aM, and show a high selectivity for discriminating miR-200 family members. More importantly, the assay enables robust miRNA analysis in human serum and can accurately differentiate lung cancer patients and prostate cancer patients from healthy donors. Its performance may satisfy the requirements for direct, rapid, sensitive and specific early diagnosis of cancer, signifying its great potential in clinical diagnostics.

8.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2567-2574, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418179

RESUMO

The study aimed to reveal the cumulative effects and stability characteristics of soil organic carbon (SOC) during forest development at the Mu Us sandy land, China. Using space for time substitution, surface soil samples were collected from semi-fixed sandy lands and restored arbor and shrub lands with the ages of 22, 32 and 53 years in the Yulin sand control region in Northern Shaanxi Province. The content of total organic carbon (TOC), oxidizable labile organic carbon, and resistant carbon and the characteristics of mineralized carbon emission and decomposition ratio were analyzed. The results showed that the increment of TOC for 22 to 53 years shrub and arbor lands from resistant carbon were 3.5-6.2 g·kg-1 and 3.2-7.7 g·kg-1, and from oxidized labile carbon were 2.8-3.4 g·kg-1 and 1.3-2.8 g·kg-1, respectively, compared with semi-fixed sand land. The ratio of soil oxidizable labile carbon in shrub land and arbor land were stable and maintained at 37.0% and 26.8%, respectively. However, the ratio decreased to 25.7% and 17.4% after incubated at a constant temperature for 60 days. The mineralization rate of shrub and arbor lands with 22-53 years was not significant at the ending of soil incubation. Carbon losses from oxidized liable carbon were 76.9%-98.7%, and only 1.3%-23.5% from resistant carbon in all sand-fixing forest plots. Compared with the maximum carbon emission rate, the soil cumulative carbon release exhibited a higher correlation with soil enzyme activities of ß-glucosidase and dehydrogenase, but the enzyme activities did not change from 32-53 years. In conclusion, SOC pool showed stable characteristics of lower emission and higher sequestration with the increases of sand-fixing forest stand age. The carbon fixation effect of arbor sand-fixing forest was better than that of shrub sand-fixing forest.


Assuntos
Carbono/análise , Florestas , Solo/química , Sequestro de Carbono , China
9.
Parasitol Int ; 73: 101974, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421266

RESUMO

Hookworms are blood-sucking nematodes that infect dogs, cats, and humans, causing iron-deficiency anemia, abdominal pain, diarrhea, and skin inflammation. Amplification refractory mutation system (ARMS) is a modified technology based on allele-specific PCR, which is widely used in mutation detection and genotyping. However, no data about ARMS application in hookworm detection. This study aims to establish a multi-ARMS-qPCR method for the detection of three hookworm species from dogs and cats. A universal forward primer and three specific primers (ARMS-Cey, ARMS-Can, and ARMS-Tub) were designed based on the three ITS SNPs (ITS250, ITS78 and ITS153) of Ancylostoma ceylanicum, A. caninum, and A. tubaeforme, respectively. The results showed that the three designed ARMS primers generated specific melting curves for the three hookworms' standard plasmids. The melting temperature (Tm) values were 88.40 °C (A. ceylanicum), 83.15 °C (A. caninum), and 85.65 °C (A. tubaeforme), with good reproducibility of intra- and inter-assay. No amplification was observed with other intestinal parasites. The limit of detection using the established technique was 1, 2, and 104 egg per gram feces (EPG) for A. caninum, A. tubaeforme and A. ceylanicum, respectively. Using multi-ARMS-qPCR assay, 17 out of 50 fecal samples were positive for hookworms, including ten single and seven mixed infections, and single infections were quantified. In conclusion, the used multi-ARMS-qPCR method has the advantages of high efficiency, sensitivity, specificity, and quantitative analysis and can be used for the clinical detection, epidemiological investigation, and zoonotic risk assessment of canine and feline hookworms.

10.
Bioresour Technol ; 292: 121887, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31401355

RESUMO

Water eutrophication may be affected not only by nutrients but also the coexisting organic carbon. In order to reveal the effect of external carbon on algal growth, an experimental study was conducted using Chlorella vulgaris as the representative microalgae to investigate their growth under varied N and P levels with/without added glucose at TOC = 18 mg/L. The TOC consumption by microalgae growth depended much on N and P concentrations and N/P ratio especially when P was sufficient. This ultimately increased the specific growth rate and resulted in higher N and P accumulations but lower carbon fixation in algal biomass in contrast to non-TOC addition. The biomass dry weight became much lower with TOC addition, along with an apparent change of algal composition shown by the much lower chlorophyll contents in the microalgae cells, which might associate the extent of two carbon fixation pathways - anabolism vs catabolism.

11.
J Environ Manage ; 248: 109254, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31306927

RESUMO

Phosphorus is an essential element for life and is predicted to deplete within the next 100 years. Struvite crystallization is a potential phosphorus recovery technique to mitigate this problem by producing a slow release fertilizer. However, complex wastewater composition and a large number of process variables result in process uncertainties, making the process difficult to predict and control. This paper reviews the research progress on struvite crystallization fundamentals to address this challenge. The influence of manipulated variables (e.g. seed material, magnesium dosage and pH) and sources of variation on phosphorus removal efficiency (e.g. organics and heavy metal concentration) and product purity were investigated. Recently developed models to describe, control and optimize those variables were also discussed. This review helps to identify potential challenges in different wastewater streams and provide valuable information for future phosphorus recovery unit design. It therefore paves the way for commercialization of struvite crystallization in the future.

12.
Int J Mol Sci ; 20(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337110

RESUMO

Buckwheat is an important functional food material with high nutritional value. However, it is still a difficult task for the taxonomy studies of wild buckwheat that are only based on morphology. In order to demonstrate the most efficient DNA barcode in the phylogenetic research of buckwheat, promote the investigation of wild buckwheat, and also reveal the phylogenetic relationship between Fagopyrum species, psbE-psbL and ndhA intron were validated here, which previously have been proved to be promising DNA barcode candidates for phylogenetic studies in genera Fagopyrum. Meanwhile, ndhA intron + psbE-psbL and matK + psbE-psbL could distinguish the relationship between species clearly. Combining the results of morphology and molecular markers, we suggested the buckwheat species should be divided into two subgroups, one subgroup consisted of F. tataricum, F. esculentum, F. cymosum and its related wild species, and the other subgroup included other wild buckwheat species. Our results could fulfill molecular markers of taxonomy research in genera Fagopyrum, promote wild buckwheat species identification, and assist in the use of wild buckwheat resources in the future. Additionally, the phylogenetic relationship revealed here could provide valuable information for molecular breeding of buckwheat and provide reference for inter-species hybridization.

13.
Aging Cell ; 18(5): e13001, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31287605

RESUMO

Rho-associated coiled-coil kinase 1 (ROCK1) is proposed to be implicated in Aß suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aß was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased ß-secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y-27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.

14.
IEEE Trans Image Process ; 28(12): 6141-6153, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31295112

RESUMO

Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of model parameters. The feature sharing unit combines with a data fidelity unit to comprise an inference block, which are then cascaded with dense connections, allowing for efficient information transmission across different depths of the network. Experiments on various multi-contrast MRI datasets show that the proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We demonstrate that improved reconstruction quality can bring benefits to subsequent medical image analysis. Furthermore, the robustness of the proposed model to misregistration shows its potential in real MRI applications.

15.
Magn Reson Imaging ; 63: 37-48, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31306732

RESUMO

Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of high frequency details. In this paper, we propose a new framework for CS-MRI inversion in which we decompose the observed k-space data into "subspaces" via sets of filters in a lossless way, and reconstruct the images in these various spaces individually using off-the-shelf algorithms. We then fuse the results to obtain the final reconstruction. In this way, we are able to focus reconstruction on frequency information within the entire k-space more equally, preserving both high and low frequency details. We demonstrate that the proposed framework is competitive with state-of-the-art methods in CS-MRI in terms of quantitative performance, and often improves an algorithm's results qualitatively compared with its direct application to k-space.

16.
Magn Reson Imaging ; 63: 185-192, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31352015

RESUMO

Compressive sensing enables fast magnetic resonance imaging (MRI) reconstruction with undersampled k-space data. However, in most existing MRI reconstruction models, the whole MR image is targeted and reconstructed without taking specific tissue regions into consideration. This may fails to emphasize the reconstruction accuracy on important and region-of-interest (ROI) tissues for diagnosis. In some ROI-based MRI reconstruction models, the ROI mask is extracted by human experts in advance, which is laborious when the MRI datasets are too large. In this paper, we propose a deep neural network architecture for ROI MRI reconstruction called ROIRecNet to improve reconstruction accuracy of the ROI regions in under-sampled MRI. In the model, we obtain the ROI masks by feeding an initially reconstructed MRI from a pre-trained MRI reconstruction network (RecNet) to a pre-trained MRI segmentation network (ROINet). Then we fine-tune the RecNet with a binary weighted ℓ2 loss function using the produced ROI mask. The resulting ROIRecNet can offer more focus on the ROI. We test the model on the MRBrainS13 dataset with different brain tissues being ROIs. The experiment shows the proposed ROIRecNet can significantly improve the reconstruction quality of the region of interest.

17.
Milbank Q ; 97(3): 858-880, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332837

RESUMO

Policy Points The World Health Organization has recommended sodium reduction as a "best buy" to prevent cardiovascular disease (CVD). Despite this, Congress has temporarily blocked the US Food and Drug Administration (FDA) from implementing voluntary industry targets for sodium reduction in processed foods, the implementation of which could cost the industry around $16 billion over 10 years. We modeled the health and economic impact of meeting the two-year and ten-year FDA targets, from the perspective of people working in the food system itself, over 20 years, from 2017 to 2036. Benefits of implementing the FDA voluntary sodium targets extend to food companies and food system workers, and the value of CVD-related health gains and cost savings are together greater than the government and industry costs of reformulation. CONTEXT: The US Food and Drug Administration (FDA) set draft voluntary targets to reduce sodium levels in processed foods. We aimed to determine cost effectiveness of meeting these draft sodium targets, from the perspective of US food system workers. METHODS: We employed a microsimulation cost-effectiveness analysis using the US IMPACT Food Policy model with two scenarios: (1) short term, achieving two-year FDA reformulation targets only, and (2) long term, achieving 10-year FDA reformulation targets. We modeled four close-to-reality populations: food system "ever" workers; food system "current" workers in 2017; and subsets of processed food "ever" and "current" workers. Outcomes included cardiovascular disease cases prevented and postponed as well as incremental cost-effectiveness ratio per quality-adjusted life year (QALY) gained from 2017 to 2036. FINDINGS: Among food system ever workers, achieving long-term sodium reduction targets could produce 20-year health gains of approximately 180,000 QALYs (95% uncertainty interval [UI]: 150,000 to 209,000) and health cost savings of approximately $5.2 billion (95% UI: $3.5 billion to $8.3 billion), with an incremental cost-effectiveness ratio (ICER) of $62,000 (95% UI: $1,000 to $171,000) per QALY gained. For the subset of processed food industry workers, health gains would be approximately 32,000 QALYs (95% UI: 27,000 to 37,000); cost savings, $1.0 billion (95% UI: $0.7bn to $1.6bn); and ICER, $486,000 (95% UI: $148,000 to $1,094,000) per QALY gained. Because many health benefits may occur in individuals older than 65 or the uninsured, these health savings would be shared among individuals, industry, and government. CONCLUSIONS: The benefits of implementing the FDA voluntary sodium targets extend to food companies and food system workers, with the value of health gains and health care cost savings outweighing the costs of reformulation, although not for the processed food industry.

18.
J Cell Biochem ; 120(11): 18588-18598, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31271226

RESUMO

Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both ß-catenin dependent pathway, and ß-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.

19.
Plant Cell Environ ; 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307119

RESUMO

Blood orange is generally recognized to accumulate anthocyanins in its fruit pulp in a cold-inducible manner. We observed that the fruit peel of blood orange can also accumulate anthocyanins under ample light conditions. Interestingly, purple pummelo can accumulate anthocyanins only in its fruit peel but not in its pulp. The mechanism underlying the tissue specificity of anthocyanin accumulation in citrus is unknown. Here, we show that the active promoter of Ruby1, a key activator of anthocyanin biosynthesis, is also light inducible in addition to its already known cold inducibility in blood orange. Electrophoretic mobility shift assays and transient expression assays showed that HY5 positively regulated the transcription of Ruby1 by binding to the G-box motif (CACGTC). The tissue specificity of anthocyanin accumulation in the peel of purple pummelo may be due to the lack of a low temperature responsive element and a MYC binding site, which were shown to be involved in cold inducibility of CsRuby1 in blood orange by insertion of a long terminal repeat type retrotransposon in the promoter. These results bring new insights into the regulatory mechanism of anthocyanin biosynthesis in response to environmental stimuli and provide cis-elements for genetic improvement of anthocyanin-stable fruits rich in antioxidant metabolites.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31329133

RESUMO

Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA