Unable to write in log file ../../bases/logs/portalorg/logerror.txt Pesquisa | Portal Regional da BVS
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37140909

RESUMO

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

2.
Nano Lett ; 23(9): 3985-3993, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116103

RESUMO

Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP-exciton and PhP-vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications.

3.
Nat Commun ; 13(1): 6850, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369225

RESUMO

Phonon polariton (PhP) nanoresonators can dramatically enhance the coupling of molecular vibrations and infrared light, enabling ultrasensitive spectroscopies and strong coupling with minute amounts of matter. So far, this coupling and the resulting localized hybrid polariton modes have been studied only by far-field spectroscopy, preventing access to modal near-field patterns and dark modes, which could further our fundamental understanding of nanoscale vibrational strong coupling (VSC). Here we use infrared near-field spectroscopy to study the coupling between the localized modes of PhP nanoresonators made of h-BN and molecular vibrations. For a most direct probing of the resonator-molecule coupling, we avoid the direct near-field interaction between tip and molecules by probing the molecule-free part of partially molecule-covered nanoresonators, which we refer to as remote near-field probing. We obtain spatially and spectrally resolved maps of the hybrid polariton modes, as well as the corresponding coupling strengths, demonstrating VSC on a single PhP nanoresonator level. Our work paves the way for near-field spectroscopy of VSC phenomena not accessible by conventional techniques.

4.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162104

RESUMO

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

5.
Nano Lett ; 22(16): 6509-6515, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960261

RESUMO

Strain engineering can be used to control the physical properties of two-dimensional van der Waals (2D-vdW) crystals. Coherent phonons, which carry dynamical strain, could push strain engineering to control classical and quantum phenomena in the unexplored picosecond temporal and nanometer spatial regimes. This intriguing approach requires the use of coherent GHz and sub-THz 2D phonons. Here, we report on nanostructures that combine nanometer thick vdW layers and nanogratings. Using an ultrafast pump-probe technique, we generate and detect in-plane coherent phonons with frequency up to 40 GHz and hybrid flexural phonons with frequency up to 10 GHz. The latter arises from the periodic modulation of the elastic coupling of the vdW layer at the grooves and ridges of the nanograting. This creates a new type of a tailorable 2D periodic phononic nanoobject, a flexural phononic crystal, offering exciting prospects for the ultrafast manipulation of states in 2D materials in emerging quantum technologies.

6.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35435688

RESUMO

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

7.
Nat Mater ; 21(5): 526-532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256792

RESUMO

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Assuntos
Nanofios , Eletricidade , Eletricidade Estática , Estereoisomerismo , Telúrio
8.
Adv Mater ; 34(21): e2200474, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334502

RESUMO

The exfoliation of layered magnetic materials generates atomically thin flakes characterized by an ultrahigh surface sensitivity, which makes their magnetic properties tunable via external stimuli, such as electrostatic gating and proximity effects. Another powerful approach to engineer magnetic materials is molecular functionalization, generating hybrid interfaces with tailored magnetic interactions, called spinterfaces. However, spinterface effects have not yet been explored on layered magnetic materials. Here, the emergence of spinterface effects is demonstrated at the interface between flakes of the prototypical layered magnetic metal Fe3 GeTe2 and thin films of Co-phthalocyanine. Magnetotransport measurements show that the molecular layer induces a magnetic exchange bias in Fe3 GeTe2 , indicating that the unpaired spins in Co-phthalocyanine develop antiferromagnetic ordering and pin the magnetization reversal of Fe3 GeTe2 via magnetic proximity. The effect is strongest for a Fe3 GeTe2 thickness of 20 nm, for which the exchange bias field reaches -840 Oe at 10 K and is measurable up to ≈110 K. This value compares very favorably with previous exchange bias fields reported for Fe3 GeTe2 in all-inorganic van der Waals heterostructures, demonstrating the potential of molecular functionalization to tailor the magnetism of van der Waals layered materials.

9.
ACS Appl Mater Interfaces ; 14(6): 8598-8604, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119253

RESUMO

The spin Hall magnetoresistance (SMR) emerged as a reference tool to investigate the magnetic properties of materials with an all-electrical setup. Its sensitivity to the magnetization of thin films and surfaces may turn it into a valuable technique to characterize van der Waals magnetic materials, which support long-range magnetic order in atomically thin layers. However, realistic surfaces can be affected by defects and disorder, which may result in unexpected artifacts in the SMR, rather than the sole appearance of electrical noise. Here, we study the SMR response of heterostructures combining a platinum (Pt) thin film with the van der Waals antiferromagnet MnPSe3 and observe a robust SMR-like signal, which turns out to originate from the presence of strong interfacial disorder in the system. We use transmission electron microscopy (TEM) to characterize the interface between MnPSe3 and Pt, revealing the formation of a few nanometer-thick platinum-chalcogen amorphous layer. The analysis of the transport and TEM measurements suggests that the signal arises from a disordered magnetic system formed at the Pt/MnPSe3 interface, washing out the interaction between the spins of the Pt electrons and the MnPSe3 magnetic lattice. Our results show that the damaged interfaces can yield an important contribution to SMR, questioning a widespread assumption on the role of disorder in such measurements.

10.
Nanoscale ; 14(4): 1165-1173, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018950

RESUMO

Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical approaches like intercalation remain largely unexplored. Here, we demonstrate the manipulation of the magnetism in the van der Waals antiferromagnet NiPS3 through the intercalation of different organic cations, inserted using an engineered two-step process. First, the electrochemical intercalation of tetrabutylammonium cations (TBA+) results in a ferrimagnetic hybrid compound displaying a transition temperature of 78 K, and characterized by a hysteretic behavior with finite remanence and coercivity. Then, TBA+ cations are replaced by cobaltocenium via an ion-exchange process, yielding a ferrimagnetic phase with higher transition temperature (98 K) and higher remanent magnetization. Importantly, we demonstrate that the intercalation and cation exchange processes can be carried out in bulk crystals and few-layer flakes, opening the way to the integration of intercalated magnetic materials in devices.

11.
Chem Rev ; 122(1): 50-131, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34816723

RESUMO

Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.


Assuntos
Óxidos , Semicondutores , Eletrodos , Eletrônica , Metais/química , Óxidos/química
12.
Nat Commun ; 12(1): 6206, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707119

RESUMO

Strong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. Tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.

13.
Phys Rev Lett ; 127(4): 047202, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355972

RESUMO

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe_{2}, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy efficient spin-based logic.

14.
Nano Lett ; 21(1): 136-143, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33274947

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) represent an ideal testbench for the search of materials by design, because their optoelectronic properties can be manipulated through surface engineering and molecular functionalization. However, the impact of molecules on intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. In this work, the critical temperature (TC) of large-area NbSe2 monolayers is manipulated, employing ultrathin molecular adlayers. Spectroscopic evidence indicates that aligned molecular dipoles within the self-assembled layers act as a fixed gate terminal, collectively generating a macroscopic electrostatic field on NbSe2. This results in an ∼55% increase and a 70% decrease in TC depending on the electric field polarity, which is controlled via molecular selection. The reported functionalization, which improves the air stability of NbSe2, is efficient, practical, up-scalable, and suited to functionalize large-area TMDs. Our results indicate the potential of hybrid 2D materials as a novel platform for tunable superconductivity.

15.
Nano Lett ; 20(9): 6815-6823, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786952

RESUMO

Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure, we obtain the temperature dependence of the spin conductances (Gs, Gr, and Gi), disentangling the contribution of field-like torque (Gi), damping-like torque (Gr), and spin-flip scattering (Gs). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from Gi, which is at least three times larger than Gr below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which plays a key role in emerging fields such as superconducting spintronics and caloritronics as well as topological quantum computation.

16.
Nat Commun ; 11(1): 3663, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694591

RESUMO

Polaritons - coupled excitations of photons and dipolar matter excitations - can propagate along anisotropic metasurfaces with either hyperbolic or elliptical dispersion. At the transition from hyperbolic to elliptical dispersion (corresponding to a topological transition), various intriguing phenomena are found, such as an enhancement of the photonic density of states, polariton canalization and hyperlensing. Here, we investigate theoretically and experimentally the topological transition, the polaritonic coupling and the strong nonlocal response in a uniaxial infrared-phononic metasurface, a grating of hexagonal boron nitride (hBN) nanoribbons. By hyperspectral infrared nanoimaging, we observe a synthetic transverse optical phonon resonance (strong collective near-field coupling of the nanoribbons) in the middle of the hBN Reststrahlen band, yielding a topological transition from hyperbolic to elliptical dispersion. We further visualize and characterize the spatial evolution of a deeply subwavelength canalization mode near the transition frequency, which is a collimated polariton that is the basis for hyperlensing and diffraction-less propagation.

17.
Nano Lett ; 20(6): 4573-4579, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406693

RESUMO

Spin-orbit coupling in graphene can be enhanced by chemical functionalization, adatom decoration, or proximity with a van der Waals material. As it is expected that such enhancement gives rise to a sizable spin Hall effect, a spin-to-charge current conversion phenomenon of technological relevance, it has sparked wide research interest. However, it has only been measured in graphene/transition-metal dichalcogenide van der Waals heterostructures with limited scalability. Here, we experimentally demonstrate the spin Hall effect up to room temperature in graphene combined with a nonmagnetic insulator, an evaporated bismuth oxide layer. The measured spin Hall effect arises most likely from an extrinsic mechanism. With a large spin-to-charge conversion efficiency, scalability, and ease of integration to electronic devices, we show a promising material heterostructure suitable for spin-based device applications.

18.
Adv Mater ; 32(8): e1906908, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31944432

RESUMO

The coupling of diverse degrees of freedom opens the door to physical effects that go beyond each of them individually, making multifunctionality a much sought-after attribute for high-performance devices. Here, the multifunctional operation of a single-layer p-type organic device, displaying both spin transport and photovoltaic effect at the room temperature on a transparent substrate, is shown. The generated photovoltage is almost three times larger than the applied bias to the device which facilitates the modulation of the magnetic response of the device with both bias and light. The device shows an increase in power conversion efficiency under magnetic field, an ability to invert the current with magnetic field and under certain conditions it can act as a spin photodetector with zero power consumption in the standby mode. The room-temperature exploitation of the interplay among light, bias, and magnetic field in the single device with a p-type molecule opens a way toward the development of efficient high-performance spin photovoltaic cells.

19.
Adv Mater ; 32(9): e1906530, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31977111

RESUMO

Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale-confined volume modes in thin flakes. On the other hand, surface-confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons-representing typical linear waveguide structures-is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices.

20.
Nano Lett ; 19(12): 8758-8766, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31661967

RESUMO

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe2 flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...