Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
ISME J ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824426

RESUMO

The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.

2.
ISME J ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753881

RESUMO

Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremiobacterota, we analysed 63 public metagenome-assembled genomes (MAGs) and nine new MAGs generated from Antarctic soil metagenomes. These MAGs represent both recognized classes within Ca. Eremiobacterota, namely Ca. Eremiobacteria and UBP9. Ca. Eremiobacteria are inferred to be facultatively acidophilic with a preference for peptides and amino acids as nutrient sources. Epifluorescence microscopy revealed Ca. Eremiobacteria cells from Antarctica desert soil to be coccoid in shape. Two orders are recognized within class Ca. Eremiobacteria: Ca. Eremiobacterales and Ca. Baltobacterales. The latter are metabolically versatile, with individual members having genes required for trace gas driven autotrophy, anoxygenic photosynthesis, CO oxidation, and anaerobic respiration. UBP9, here renamed Ca. Xenobia class. nov., are inferred to be obligate heterotrophs with acidophilic adaptations, but individual members having highly divergent metabolic capacities compared to Ca. Eremiobacteria, especially with regard to respiration and central carbon metabolism. We conclude Ca. Eremiobacterota to be an ecologically versatile phylum with the potential to thrive under an array of "extreme" environmental conditions.

3.
Ann Rheum Dis ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397732

RESUMO

OBJECTIVES: Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS: After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS: RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS: Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.

4.
Nat Commun ; 11(1): 5886, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208745

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD.

6.
Int J Syst Evol Microbiol ; 70(11): 5972-6016, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33151140

RESUMO

The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class Deltaproteobacteria encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the Oligoflexia. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes Deltaproteobacteria and Oligoflexia in the phylum Proteobacteria. Instead, the great majority of currently recognized members of the class Deltaproteobacteria are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class Oligoflexia represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum Thermodesulfobacteria, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the Thermodesulfobacteria rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.

7.
Nat Biotechnol ; 38(9): 1098, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32887961

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
J Travel Med ; 27(5)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32662867

RESUMO

BACKGROUND: Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. METHODS: Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption-extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. RESULTS: SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. CONCLUSIONS: The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.


Assuntos
Aeronaves , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus , Pandemias , Pneumonia Viral , RNA Viral/isolamento & purificação , Navios , Águas Residuárias/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Viagem
9.
Nat Biotechnol ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690973

RESUMO

Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representatives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome.

12.
Nat Microbiol ; 5(8): 987-994, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514073

RESUMO

The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.


Assuntos
Archaea/classificação , Bactérias/classificação , Archaea/genética , Bactérias/genética , DNA Bacteriano , Metagenoma , Filogenia , Células Procarióticas/classificação , Análise de Sequência de DNA , Terminologia como Assunto
13.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354975

RESUMO

Limisphaera ngatamarikiensis NGM72.4T is a thermophilic representative of the class Verrucomicrobiae Isolated from geothermally heated subaqueous clay sediments from a Ngatamariki hotspring in Aotearoa New Zealand, the 3,908,748-bp genome was sequenced using the Illumina HiSeq 2500 platform. Annotation revealed 3,083 coding sequences, including 3,031 proteins, 3 rRNA genes, and 46 tRNA genes.

14.
Sci Total Environ ; 728: 138764, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387778

RESUMO

Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated viral RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1,090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Águas Residuárias/virologia , Monitoramento Epidemiológico , Humanos , Método de Monte Carlo , Pandemias , Queensland/epidemiologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Nat Biotechnol ; 38(9): 1079-1086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32341564

RESUMO

The Genome Taxonomy Database is a phylogenetically consistent, genome-based taxonomy that provides rank-normalized classifications for ~150,000 bacterial and archaeal genomes from domain to genus. However, almost 40% of the genomes in the Genome Taxonomy Database lack a species name. We address this limitation by using commonly accepted average nucleotide identity criteria to set bounds on species and propose species clusters that encompass all publicly available bacterial and archaeal genomes. Unlike previous average nucleotide identity studies, we chose a single representative genome to serve as the effective nomenclatural 'type' defining each species. Of the 24,706 proposed species clusters, 8,792 are based on published names. We assigned placeholder names to the remaining 15,914 species clusters to provide names to the growing number of genomes from uncultivated species. This resource provides a complete domain-to-species taxonomic framework for bacterial and archaeal genomes, which will facilitate research on uncultivated species and improve communication of scientific results.


Assuntos
Archaea/classificação , Bactérias/classificação , Filogenia , Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Genoma Arqueal/genética , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes
16.
Gut Microbes ; 11(4): 754-770, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31928131

RESUMO

OBJECTIVE: The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied mouse model. DESIGN: Wild-type mice were cohoused with IL-17RA-/ - mice, susceptible to hyperacute GVHD, either pre- or post-transplant alone or continuously (i.e., pre- and post-transplant). Fecal samples were collected from both WT and IL-17RA-/ - mice pre- and post-cohousing and post-transplant and the microbiome analyzed using metagenomic sequencing. RESULTS: Priming wild-type mice via cohousing pre-transplant only is insufficient to accelerate GVHD, however, accelerated disease is observed in WT mice cohoused post-transplant only. When mice are cohoused continuously, the effect of priming and exacerbation is additive, resulting in a greater acceleration of disease in WT mice beyond that seen with cohousing post-transplant only. Metagenomic analysis of the microbiome revealed pre-transplant cohousing is associated with the transfer of specific species within two as-yet-uncultured genera of the bacterial family Muribaculaceae; CAG-485 and CAG-873. Post-transplant, we observed GVHD-associated blooms of Enterobacteriaceae members Escherichia coli and Enterobacter hormaechei subsp. steigerwaltii, and hyperacute GVHD gut microbiome distinct from that associated with delayed-onset disease (>10 days post-transplant). CONCLUSION: These results clarify the importance of the peri-transplant microbiome in the susceptibility to acute GVHD post-transplant and demonstrate the species-specific nature of this association.

18.
Bioinformatics ; 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730192

RESUMO

SUMMARY: The GTDB Toolkit (GTDB-Tk) provides objective taxonomic assignments for bacterial and archaeal genomes based on the Genome Taxonomy Database (GTDB). GTDB-Tk is computationally efficient and able to classify thousands of draft genomes in parallel. Here we demonstrate the accuracy of the GTDB-Tk taxonomic assignments by evaluating its performance on a phylogenetically diverse set of 10,156 bacterial and archaeal metagenome-assembled genomes. AVAILABILITY: GTDB-Tk is implemented in Python and licensed under the GNU General Public License v3.0. Source code and documentation are available at: https://github.com/ecogenomics/gtdbtk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

19.
Nat Microbiol ; 4(12): 2192-2203, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31384000

RESUMO

Viral discovery is accelerating at an unprecedented rate due to continuing advances in culture-independent sequence-based analyses. One important facet of this discovery is identification of the hosts of these recently characterized uncultured viruses. To this end, we have adapted the viral tagging approach, which bypasses the need for culture-based methods to identify host-phage pairings. Fluorescently labelled anonymous virions adsorb to unlabelled anonymous bacterial host cells, which are then individually sorted as host-phage pairs, followed by genome amplification and high-throughput sequencing to establish the identities of both the host and the attached virus(es). We demonstrate single-cell viral tagging using the faecal microbiome, including cross-tagging of viruses and bacteria between human subjects. A total of 363 unique host-phage pairings were predicted, most of which were subject-specific and involved previously uncharacterized viruses despite the majority of their bacterial hosts having known taxonomy. One-fifth of these pairs were confirmed by multiple individual tagged cells. Viruses targeting more than one bacterial species were conspicuously absent in the host-phage network, suggesting that phages are not major vectors of inter-species horizontal gene transfer in the human gut. A high level of cross-reactivity between phages and bacteria from different subjects was noted despite subject-specific viral profiles, which has implications for faecal microbiota transplant therapy.


Assuntos
Bacteriófagos/fisiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Interações Microbianas/fisiologia , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Metagenoma , Interações Microbianas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...