Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Appl Clin Inform ; 10(4): 679-692, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31509880

RESUMO

BACKGROUND: High-quality clinical data and biological specimens are key for medical research and personalized medicine. The Biobanking and Biomolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to facilitate access to such biological resources. The accompanying ADOPT BBMRI-ERIC project kick-started BBMRI-ERIC by collecting colorectal cancer data from European biobanks. OBJECTIVES: To transform these data into a common representation, a uniform approach for data integration and harmonization had to be developed. This article describes the design and the implementation of a toolset for this task. METHODS: Based on the semantics of a metadata repository, we developed a lexical bag-of-words matcher, capable of semiautomatically mapping local biobank terms to the central ADOPT BBMRI-ERIC terminology. Its algorithm supports fuzzy matching, utilization of synonyms, and sentiment tagging. To process the anonymized instance data based on these mappings, we also developed a data transformation application. RESULTS: The implementation was used to process the data from 10 European biobanks. The lexical matcher automatically and correctly mapped 78.48% of the 1,492 local biobank terms, and human experts were able to complete the remaining mappings. We used the expert-curated mappings to successfully process 147,608 data records from 3,415 patients. CONCLUSION: A generic harmonization approach was created and successfully used for cross-institutional data harmonization across 10 European biobanks. The software tools were made available as open source.

2.
PLoS One ; 14(8): e0220681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31419226

RESUMO

Enhancer of zeste homolog 2 (EZH2) tri-methylates histone 3 at position lysine 27 (H3K27me3). Overexpression and gain-of-function mutations in EZH2 are regarded as oncogenic drivers in lymphoma and other malignancies due to the silencing of tumor suppressors and differentiation genes. EZH2 inhibition is sought to represent a good strategy for tumor therapy. In this study, we treated Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) cell lines with 3-deazaneplanocin-A (DZNep), an indirect EZH2 inhibitor which possesses anticancer properties both in-vitro and in-vivo. We aimed to address the impact of the lymphoma type, EZH2 mutation status, as well as MYC, BCL2 and BCL6 translocations on the sensitivity of the lymphoma cell lines to DZNep-mediated apoptosis. We show that DZNep inhibits proliferation and induces apoptosis of these cell lines independent of the type of lymphoma, the EZH2 mutation status and the MYC, BCL2 and BCL6 rearrangement status. Furthermore, DZNep induced a much stronger apoptosis in majority of these cell lines at a lower concentration, and within a shorter period when compared with EPZ-6438, a direct EZH2 inhibitor currently in phase II clinical trials. Apoptosis induction by DZNep was both concentration-dependent and time-dependent, and was associated with the inhibition of EZH2 and subsequent downregulation of H3K27me3 in DZNep-sensitive cell lines. Although EZH2, MYC, BCL2 and BCL6 are important prognostic biomarkers for lymphomas, our study shows that they poorly influence the sensitivity of lymphoma cell lines to DZNep-mediated apoptosis.

3.
Waste Manag ; 97: 88-96, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31447031

RESUMO

The creation of a circular economy for cellulose based textile waste is supported by the development of an upcycling method for cotton polyester blended waste garments. We present a separation procedure for cotton and polyester using [DBNH] [OAc], a superbase based ionic liquid, which allows the selective dissolution of the cellulose component. After the removal of PET, the resulting solution could be employed to dry-jet wet spin textile grade cellulose fibers down to the microfiber range (0.75-2.95 dtex) with breaking tenacities (27-48 cN/tex) and elongations (7-9%) comparable to commercial Lyocell fibers made from high-purity dissolving pulp. The treatment time in [DBNH] [OAc] was found to reduce the tensile properties (<52%) and the molar mass distribution (<51%) of PET under certain processing conditions.


Assuntos
Celulose , Poliésteres , Fibra de Algodão , Peso Molecular , Têxteis
4.
Biopreserv Biobank ; 17(4): 372-374, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31314575

RESUMO

Under the umbrella of the German Biobank Node (GBN), 11 biobanks and two IT development centers are funded by the Federal Ministry of Education and Research (BMBF) to work together in the German Biobank Alliance (GBA). Their common aim is to make existing biomaterials hosted by different biobanks nationally and internationally available for biomedical research. This position article reflects and summarizes contributions and comments made during a GBA workshop, on the cooperation between academic biobanks and pharmaceutical and diagnostics companies that took place in Leipzig on the 21st of June 2018. It documents key points agreed on by all participating biobanks during the workshop thereby addressing several of the challenges identified. Although there are various possibilities for cooperation between academic biobanks and industry, this position article focuses exclusively on projects where academic biobanks give access to their biosamples and related data to industry partners. In doing so it considers the general conditions/framework and procedures in the German biobanking environment and raises ethical, legal, and procedural issues to be addressed when initiating such collaborations. It intends to furnish a basis for further activities to foster cooperation with industry and to push an overarching national coordination process. The final aim is to develop GBN-recommendations. Of course, many hospitals already have clear regulations on collaboration(s) with industry partners. These naturally take precedence for the GBA biobanks. However, where interest exists, GBN/GBA recommendations could help to induce changes to existing local policies nonetheless.

5.
Cells ; 8(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336942

RESUMO

Detection of epithelial ovarian cancer (EOC) poses a critical medical challenge. However, novel biomarkers for diagnosis remain to be discovered. Therefore, innovative approaches are of the utmost importance for patient outcome. Here, we present a concept for blood-based biomarker discovery, investigating both epithelial and specifically stromal compartments, which have been neglected in search for novel candidates. We queried gene expression profiles of EOC including microdissected epithelium and adjacent stroma from benign and malignant tumours. Genes significantly differentially expressed within either the epithelial or the stromal compartments were retrieved. The expression of genes whose products are secreted yet absent in the blood of healthy donors were validated in tissue and blood from patients with pelvic mass by NanoString analysis. Results were confirmed by the comprehensive gene expression database, CSIOVDB (Ovarian cancer database of Cancer Science Institute Singapore). The top 25% of candidate genes were explored for their biomarker potential, and twelve were able to discriminate between benign and malignant tumours on transcript levels (p < 0.05). Among them T-cell differentiation protein myelin and lymphocyte (MAL), aurora kinase A (AURKA), stroma-derived candidates versican (VCAN), and syndecan-3 (SDC), which performed significantly better than the recently reported biomarker fibroblast growth factor 18 (FGF18) to discern malignant from benign conditions. Furthermore, elevated MAL and AURKA expression levels correlated significantly with a poor prognosis. We identified promising novel candidates and found the stroma of EOC to be a suitable compartment for biomarker discovery.

6.
Leukemia ; 33(9): 2241-2253, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243313

RESUMO

Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms has been the focus of intense research, development and application. However, standardization and validation in a scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50 diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC) was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample, range 0-14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0-14). NGS primers covered possible IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based identification of IG/TR markers in lymphoid malignancies.

7.
Leukemia ; 33(9): 2227-2240, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31197258

RESUMO

One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics.

8.
Clin Lung Cancer ; 20(5): 350-362.e4, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31175009

RESUMO

BACKGROUND: Standard therapy of advanced non-small-cell lung cancer harboring an activating mutation in the epidermal growth factor receptor (EGFR) gene is treatment with tyrosine kinase inhibitors (TKI). However, for rare and compound mutations of the EGFR gene, the clinical evidence of TKI therapy is still unclear. PATIENTS AND METHODS: A total of 2906 lung cancer samples were analyzed for EGFR mutations during routine analysis between 2010 and 2017. The samples have been investigated by Sanger sequencing and since 2014 by next-generation sequencing. RESULTS: We detected EGFR mutations in 408 specimens (14%). Among these, we found 41 samples with rare and 22 with compound mutations. In these 63 samples, 56 different rare EGFR mutations occurred. Information about the clinical outcome was available for 37. Among those with rare mutations, only one patient harboring the mutation p.G874D had disease that responded to first-generation TKI therapy. In contrast, the disease of all patients with compound mutations responded to first- or second-generation TKI therapy. Furthermore, we collected data on clinical relevance regarding TKI therapy from different databases and from an additional literature search, and only found data for 36 of the 56 detected rare mutations. CONCLUSION: Information about the clinical outcome of patients with rare and compound EGFR mutations remains limited. At present, second- and third-generation TKIs are available, which may represent new treatment strategies for these patients. Therefore, it is becoming increasingly important to maintain databases concerning rare EGFR mutations.

9.
Leukemia ; 33(9): 2254-2265, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227779

RESUMO

Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.

11.
Genome Med ; 11(1): 27, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039827

RESUMO

BACKGROUND: Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt's lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma. METHODS: We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and clinical characteristics. RESULTS: We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that of Burkitt's lymphoma and particularly on 'double-hit' MYC and BCL2 transformed lymphomas. CONCLUSIONS: The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and future studies on lymphomas and on other cancer entities.

12.
Cancer Res ; 79(12): 3125-3138, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31000522

RESUMO

Oncogenic MYC activation promotes proliferation in Burkitt lymphoma, but also induces cell-cycle arrest and apoptosis mediated by p53, a tumor suppressor that is mutated in 40% of Burkitt lymphoma cases. To identify molecular dependencies in Burkitt lymphoma, we performed RNAi-based, loss-of-function screening in eight Burkitt lymphoma cell lines and integrated non-Burkitt lymphoma RNAi screens and genetic data. We identified 76 genes essential to Burkitt lymphoma, including genes associated with hematopoietic cell differentiation (FLI1, BCL11A) or B-cell development and activation (PAX5, CDKN1B, JAK2, CARD11) and found a number of context-specific dependencies including oncogene addiction in cell lines with TCF3/ID3 or MYD88 mutation. The strongest genotype-phenotype association was seen for TP53. MDM4, a negative regulator of TP53, was essential in TP53 wild-type (TP53wt) Burkitt lymphoma cell lines. MDM4 knockdown activated p53, induced cell-cycle arrest, and decreased tumor growth in a xenograft model in a p53-dependent manner. Small molecule inhibition of the MDM4-p53 interaction was effective only in TP53wt Burkitt lymphoma cell lines. Moreover, primary TP53wt Burkitt lymphoma samples frequently acquired gains of chromosome 1q, which includes the MDM4 locus, and showed elevated MDM4 mRNA levels. 1q gain was associated with TP53wt across 789 cancer cell lines and MDM4 was essential in the TP53wt-context in 216 cell lines representing 19 cancer entities from the Achilles Project. Our findings highlight the critical role of p53 as a tumor suppressor in Burkitt lymphoma and identify MDM4 as a functional target of 1q gain in a wide range of cancers that is therapeutically targetable. SIGNIFICANCE: Targeting MDM4 to alleviate degradation of p53 can be exploited therapeutically across Burkitt lymphoma and other cancers with wild-type p53 harboring 1q gain, the most frequent copy number alteration in cancer.

13.
Clin Cancer Res ; 25(13): 3986-3995, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30979740

RESUMO

PURPOSE: Next-generation sequencing (NGS) can be used for comprehensive investigation of molecular events in breast cancer. We evaluated the relevance of genomic alterations for response to neoadjuvant chemotherapy (NACT) in the GeparSepto trial. EXPERIMENTAL DESIGN: Eight hundred fifty-one pretherapeutic formalin-fixed paraffin-embedded (FFPE) core biopsies from GeparSepto study were sequenced. The panel included 16 genes for mutational (AKT1, BRAF, CDH1, EGFR, ERBB2, ESR1, FBXW7, FGFR2, HRAS, KRAS, NRAS, SF3B1, TP53, HNF1A, PIK3CA, and PTEN) and 8 genes for copy-number alteration analysis (CCND1, ERBB2, FGFR1, PAK1, PIK3CA, TOP2A, TP53, and ZNF703). RESULTS: The most common genomic alterations were mutations of TP53 (38.4%) and PIK3CA (21.5%), and 8 different amplifications (TOP2A 34.9%; ERBB2 30.6%; ZNF703 30.1%; TP53 21.9%; PIK3CA 24.1%; CCND1 17.7%; PAK1 14.9%; FGFR 12.6%). All other alterations had a prevalence of less than 5%. The genetic heterogeneity in different breast cancer subtypes [lum/HER2neg vs. HER2pos vs. triple-negative breast cancer (TNBC)] was significantly linked to differences in NACT response. A significantly reduced pathologic complete response rate was observed in PIK3CA-mutated breast cancer [PIK3CAmut: 23.0% vs. wild-type (wt) 38.8%, P < 0.0001] in particular in the HER2pos subcohort [multivariate OR = 0.43 (95% CI, 0.24-0.79), P = 0.006]. An increased response to nab-paclitaxel was observed only in PIK3CAwt breast cancer, with univariate significance for the complete cohort (P = 0.009) and the TNBC (P = 0.013) and multivariate significance in the HER2pos subcohort (test for interaction P = 0.0074). CONCLUSIONS: High genetic heterogeneity was observed in different breast cancer subtypes. Our study shows that FFPE-based NGS can be used to identify markers of therapy resistance in clinical study cohorts. PIK3CA mutations could be a major mediator of therapy resistance in breast cancer.

14.
BMC Cancer ; 19(1): 322, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953469

RESUMO

BACKGROUND: MYC is a heterogeneously expressed transcription factor that plays a multifunctional role in many biological processes such as cell proliferation and differentiation. It is also associated with many types of cancer including the malignant lymphomas. There are two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a superior outcome. METHODS: To shed light on this phenomenon, we investigated the different modes of actions of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation (DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for transcriptional activity. These data were supplemented with gene expression data derived from RNA-Seq. RESULTS: Bioinformatics integration of all data sets revealed different MYC-binding patterns and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed in BL but not in DLBCL regardless of MYC translocation. CONCLUSION: Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, metastasis and invasion, it might also be instrumental to better understand the different pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and DLBCL.


Assuntos
Antígenos CD/genética , Linfoma de Burkitt/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Análise de Sequência de RNA , Translocação Genética
15.
Nat Commun ; 10(1): 1459, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926794

RESUMO

Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.


Assuntos
Linfoma de Burkitt/genética , Genoma Humano , Transcriptoma/genética , Adolescente , Processamento Alternativo/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Estudos de Coortes , Metilação de DNA/genética , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação INDEL/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Sequenciamento Completo do Genoma
16.
Carbohydr Polym ; 212: 206-214, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832848

RESUMO

The efficiency of mixtures of ionic liquids (ILs) and molecular solvents in cellulose dissolution and derivatization depends on the structures of both components. We investigated the ILs 1-(1-butyl)-3-methylimidazolium acetate (C4MeImAc) and 1-(2-methoxyethyl)-3-methylimidazolium acetate (C3OMeImAc) and their solutions in dimethyl sulfoxide, DMSO, to assess the effect of presence of an ether linkage in the IL side-chain. Surprisingly, C4MeImAc-DMSO was more efficient than C3OMeImAc-DMSO for the dissolution and acylation of cellulose. We investigated both solvents using rheology, NMR spectroscopy, and solvatochromism. Mixtures of C3OMeImAc-DMSO are more viscous, less basic, and form weaker hydrogen bonds with cellobiose than C4MeImAc-DMSO. We attribute the lower efficiency of C3OMeImAc to "deactivation" of the ether oxygen and C2H of the imidazolium ring due to intramolecular hydrogen bonding. Using the corresponding ILs with C2CH3 instead of C2H, namely, 1-butyl-2,3-dimethylimidazolium acetate (C4Me2ImAc) and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C3OMe2ImAc) increased the concentration of dissolved cellulose; without noticeable effect on biopolymer reactivity.

17.
Mod Pathol ; 32(6): 855-865, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30723296

RESUMO

Pulmonary enteric adenocarcinoma is a rare non-small cell lung cancer subtype. It is poorly characterized and cannot be distinguished from metastatic colorectal or upper gastrointestinal adenocarcinomas by means of routine pathological methods. As DNA methylation patterns are known to be highly tissue specific, we aimed to develop a methylation-based algorithm to differentiate these entities. To this end, genome-wide methylation profiles of 600 primary pulmonary, colorectal, and upper gastrointestinal adenocarcinomas obtained from The Cancer Genome Atlas and the Gene Expression Omnibus database were used as a reference cohort to train a machine learning algorithm. The resulting classifier correctly classified all samples from a validation cohort consisting of 680 primary pulmonary, colorectal and upper gastrointestinal adenocarcinomas, demonstrating the ability of the algorithm to reliably distinguish these three entities. We then analyzed methylation data of 15 pulmonary enteric adenocarcinomas as well as four pulmonary metastases and four primary colorectal adenocarcinomas with the algorithm. All 15 pulmonary enteric adenocarcinomas were reliably classified as primary pulmonary tumors and all four metastases as well as all four primary colorectal cancer samples were identified as colorectal adenocarcinomas. In a t-distributed stochastic neighbor embedding analysis, the pulmonary enteric adenocarcinoma samples did not form a separate methylation subclass but rather diffusely intermixed with other pulmonary cancers. Additional characterization of the pulmonary enteric adenocarcinoma series using fluorescence in situ hybridization, next-generation sequencing and copy number analysis revealed KRAS mutations in nine of 15 samples (60%) and a high number of structural chromosomal changes. Except for an unusually high rate of chromosome 20 gain (67%), the molecular data was mostly reminiscent of standard pulmonary adenocarcinomas. In conclusion, we provide sound evidence of the pulmonary origin of pulmonary enteric adenocarcinomas and in addition provide a publicly available machine learning-based algorithm to reliably distinguish these tumors from metastatic colorectal cancer.

19.
Carbohydr Polym ; 207: 11-16, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599991

RESUMO

The valorization of cellulose rich textile waste is promoted by the development of a novel solid-state NMR method for the quantification of cellulose and polyester in textile blends. We applied 13C CP-MAS NMR as a tool for the quantification and structural characterization of cellulose in cotton polyester blends. Gaussian functions were used to integrate the spectra obtained from a set of calibration standards in order to calculate a sigmoidal calibration curve. Acid hydrolysis was chosen as a reference method. The results demonstrated that solid-state NMR enables a reliable determination of cellulose and polyester in both preconsumer and postconsumer waste textiles and suggests a possible extension of the concept to blends of man-made cellulose fibers (MMCFs) and polyester.


Assuntos
Celulose/análise , Resíduos Industriais/análise , Poliésteres/análise , Têxteis , Calibragem , Celulose/química , Fibra de Algodão/análise , Hidrólise , Espectroscopia de Ressonância Magnética/métodos
20.
J Pediatr ; 207: 205-212.e5, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30579582

RESUMO

OBJECTIVE: To assess indications of eating disorders in girls with type 1 diabetes mellitus (T1DM). STUDY DESIGN: In total 31 556 girls aged >6 months and <23 years of age with T1DM from the Diabetes Patienten Verlaufsdokumentation (DPV) cohort were analyzed including 155 (0.49%) girls with anorexia nervosa, 85 (0.27%) girls with bulimia nervosa, 45 (0.14%) girls with binge eating disorder, and 229 (0.73%) girls with eating disorders not otherwise specified. Patient characteristics, weight changes, numbers of patients with severe hypoglycemia and diabetic ketoacidosis (DKA), changes of glycosylated hemoglobin A1c (HbA1c) levels, use of pumps, and prevalence of celiac disease and autoimmune thyroiditis were compared between girls with and without eating disorders. Multiple logistic regression analyses were performed. RESULTS: Eating disorders were significantly associated with late pubertal age, nonusage of pumps, no migration background, increased HbA1c levels, increased frequencies of DKA and severe hypoglycemia, and celiac disease were not related to eating disorders. Significant differences in HbA1c levels, prevalence of DKA and severe hypoglycemia between girls with and without eating disorders were already detectable in the first years after onset of T1DM. A decrease of body mass index (BMI)-SDS increased the risk for comorbid anorexia nervosa (7.1-fold [95% CI 3.6-14.3] compared with stable BMI-SDS, 6.9-fold [95%CI 3.4-14.1] compared with increase of BMI-SDS). CONCLUSIONS: Poor metabolic control and increased rates of DKA and severe hypoglycemia in the first years after manifestation of T1DM can be hints for eating disorders in girls with T1DM, and weight loss is specific for anorexia nervosa. These clinical features should lead to screening for eating disorders especially at a late pubertal age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA