Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(49): e202309025, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37614026

RESUMO

Metal-organic frameworks (MOFs) provide uniquely tunable, periodic platforms for site-isolation of reactive low-valent metal complexes of relevance in modern catalysis, adsorptive applications, and fundamental structural studies. Strategies for integrating such species in MOFs include post-synthetic metalation, encapsulation and direct synthesis using low-valent organometallic complexes as building blocks. These approaches have each proven effective in enhancing catalytic activity, modulating product distributions (i.e., by improving catalytic selectivity), and providing valuable mechanistic insights. In this minireview, we explore these different strategies, as applied to isolate low-valent species within MOFs, with a particular focus on examples that leverage the unique crystallinity, permanent porosity and chemical mutability of MOFs to achieve deep structural insights that lead to new paradigms in the field of hybrid catalysis.

2.
Dalton Trans ; 47(44): 15827-15834, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30358783

RESUMO

Kinetic CO2 adsorption measurements in the water-stable and permanently microporous Metal-organic framework material, Mg-CUK-1, reveal a 1.8-fold increase in CO2 capture from 4.6 wt% to 8.5 wt% in the presence of 18% relative humidity. Thermodynamic CO2 uptake experiments corroborate this enhancement effect, while grand canonical Monte Carlo simulations also support the phenomenon of a humidity-induced increase in the CO2 sorption capacity in Mg-CUK-1. Molecular simulations were implemented to gain insight into the microscopic adsorption mechanism responsible for the observed CO2 sorption enhancement. These simulations indicate that the cause of increasing CO2 adsorption enthalpy in the presence of H2O is due to favorable intermolecular interactions between the co-adsorbates confined within the micropores of Mg-CUK-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA