Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Ann Neurol ; 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33443317

RESUMO

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing (ES) detected biallelic putative disease-causing variants in MED27, encoding Mediator Complex Subunit 27, in sixteen patients from eleven families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. This article is protected by copyright. All rights reserved.

3.
Int J Pediatr Otorhinolaryngol ; 138: 110369, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927352

RESUMO

OBJECTIVES: Pediatric Obstructive Sleep Apnea (OSA) is associated with neurocognitive deficits. Cerebral structural alterations in the frontal cortex, cerebellum, and hippocampus have been reported in adult OSA patients. These brain areas are important for executive functioning, motor regulation of breathing, and memory function, respectively. Corresponding evidence comparing cerebral structures in pediatric OSA patients is limited. The objective of this study is to investigate MRI differences in cortical thickness and cortical volume in children with and without OSA. STUDY DESIGN: Prospective, single institutional case-control study. METHODS: Forty-five children were recruited at a pediatric tertiary care center (27 with OSA; mean age 9.9 ± 1.9 years, and 18 controls; mean age 10.5 ± 1.0 years). The OSA group underwent magnetic resonance imaging (MRI), polysomnography (PSG) and completed the Pediatric Daytime Sleepiness Scale (PDSS) and the Child's Sleep Habits Questionnaire (CSHQ). High-resolution T1-weighted MRI was utilized to examine cortical thickness and gray and white matter volume in children with OSA compared to a healthy group of demographically-comparable children without OSA selected from a pre-existing MRI dataset. RESULTS: Children with OSA showed multiple regions of cortical thinning primarily in the left hemisphere. Reduced gray matter (GM) volume was noted in the OSA group in multiple frontal regions of the left hemisphere (superior frontal, rostral medial frontal, and caudal medial frontal regions). Reduced white matter (WM) volume in both the left and right hemisphere was observed in regions of the frontal, parietal, and occipital lobes in children with OSA. CONCLUSION: This study noted differences in cortical thickness and GM and WM regional brain volumes in children with OSA. These findings are consistent with other pediatric studies, which also report differences between healthy children and those with OSA. We found that the severity of OSA does not correlate with the extent of MRI alterations.

4.
Mol Genet Genomic Med ; 8(10): e1383, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692472

RESUMO

BACKGROUND: CACNA1A variants have been described in several disorders that encompass a wide range of neurologic phenotypes, including hemiplegic migraine, ataxia, cognitive delay, and epilepsy. To date, ischemic stroke caused by a CACNA1A variant has only been reported once in the literature. METHODS: We describe a 4-year-old female with recurrent ischemic strokes beginning at 6 weeks of age, intractable epilepsy, and significant global developmental delay. Exome sequencing (ES) was completed for her evaluation. RESULTS: We found a novel de novo, likely pathogenic variant, p.Leu1692Gln in CACNA1A by ES. The substitution affects a leucine residue that is highly conserved in species from fish to primates. CONCLUSION: We present the second case of recurrent ischemic strokes in a patient with CACNA1A mutation. Our findings expand the phenotypic heterogeneity related to Cav 2.1 (P/Q-type) calcium channel dysfunction and suggest consideration of CACNA1A disorder in evaluation of pediatric strokes.

5.
J Neurotrauma ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32503385

RESUMO

This study investigated patterns of cortical organization in adolescents who had sustained a traumatic brain injury (TBI) during early childhood to determine ways in which early head injury may alter typical brain development. Increased gyrification in other patient populations is associated with polymicrogyria and aberrant development, but this has not been investigated in TBI. Seventeen adolescents (mean age = 14.1 ± 2.4) who sustained a TBI between 1-8 years of age, and 17 demographically-matched typically developing children (TDC) underwent a high-resolution, T1-weighted 3-Tesla magnetic resonance imaging (MRI) at 6-15 years post-injury. Cortical white matter volume and organization was measured using FreeSurfer's Local Gyrification Index (LGI). Despite a lack of significant difference in white matter volume, participants with TBI demonstrated significantly increased LGI in several cortical regions that are among those latest to mature in normal development, including left parietal association areas, bilateral dorsolateral and medial frontal areas, and the right posterior temporal gyrus, relative to the TDC group. Additionally, there was no evidence of increased surface area in the regions that demonstrated increased LGI. Higher Vineland-II Socialization scores were associated with decreased LGI in right frontal and temporal regions. The present results suggest an altered pattern of expected development in cortical gyrification in the TBI group, with changes in late-developing frontal and parietal association areas. Such changes in brain structure may underlie cognitive and behavioral deficits associated with pediatric TBI. Alternatively, increased gyrification following TBI may represent a compensatory mechanism that allows for typical development of cortical surface area, despite reduced brain volume.

7.
Ann Clin Transl Neurol ; 7(5): 610-627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32286009

RESUMO

OBJECTIVE: Defects in ion channels and neurotransmitter receptors are implicated in developmental and epileptic encephalopathy (DEE). Metabotropic glutamate receptor 7 (mGluR7), encoded by GRM7, is a presynaptic G-protein-coupled glutamate receptor critical for synaptic transmission. We previously proposed GRM7 as a candidate disease gene in two families with neurodevelopmental disorders (NDDs). One additional family has been published since. Here, we describe three additional families with GRM7 biallelic variants and deeply characterize the associated clinical neurological and electrophysiological phenotype and molecular data in 11 affected individuals from six unrelated families. METHODS: Exome sequencing and family-based rare variant analyses on a cohort of 220 consanguineous families with NDDs revealed three families with GRM7 biallelic variants; three additional families were identified through literature search and collaboration with a clinical molecular laboratory. RESULTS: We compared the observed clinical features and variants of 11 affected individuals from the six unrelated families. Identified novel deleterious variants included two homozygous missense variants (c.2671G>A:p.Glu891Lys and c.1973G>A:p.Arg685Gln) and one homozygous stop-gain variant (c.1975C>T:p.Arg659Ter). Developmental delay, neonatal- or infantile-onset epilepsy, and microcephaly were universal. Three individuals had hypothalamic-pituitary-axis dysfunction without pituitary structural abnormality. Neuroimaging showed cerebral atrophy and hypomyelination in a majority of cases. Two siblings demonstrated progressive loss of myelination by 2 years in both and an acquired microcephaly pattern in one. Five individuals died in early or late childhood. CONCLUSION: Detailed clinical characterization of 11 individuals from six unrelated families demonstrates that rare biallelic GRM7 pathogenic variants can cause DEEs, microcephaly, hypomyelination, and cerebral atrophy.

8.
J Neurotrauma ; 37(19): 2093-2101, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31931657

RESUMO

There are no validated, objective diagnostic or prognostic biomarkers for sports-related concussion (SRC), which hinders evidence-based treatment for concussed athletes. While quantitative electrophysiology (EEG) and diffusion tensor imaging (DTI) are promising technologies for providing objective biomarkers for concussion, the degree to which they are related has not been systematically investigated in concussed athletes. This study examined whether diffusion metrics differentiated concussed athletes with prolonged recovery (n = 18) from non-conccused athletes (n = 13) and whether observed diffusion alterations related to EEG. Collegiate athletes (N = 31) completed EEG, neurocognitive, and magnetic resonance imaging. White matter diffusivity differed between the groups in multiple white matter tracts, including the corpus callosum, cingulum bundle, thalamic radiations, and inferior fronto-occipital, inferior longitudinal, and uncinate fasciculi, but not after correction for multiple comparisons. The enhanced Brain Function Index (eBFI), a measure that combines EEG and neurocognitive data, significantly correlated with altered diffusion in the concussed athletes. These preliminary findings suggest that the absolute deviation of diffusion metrics in concussed versus non-concussed athletes may have clinically utility. Results also suggested that the eBFI may be sensitive to early changes from sports-related concussion.

9.
Brain Imaging Behav ; 14(3): 772-786, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30565025

RESUMO

Microstructural neuropathology occurs in the corpus callosum (CC) after repetitive sports concussion in boxers and can be dose-dependent. However, the specificity and relation of CC changes to boxing exposure extent and post-career psychiatric and neuropsychological outcomes are largely unknown. Using deterministic diffusion tensor imaging (DTI) techniques, boxers and demographically-matched, noncontact sport athletes were compared to address literature gaps. Ten boxers and 9 comparison athletes between 26 and 59 years old (M = 44.63, SD = 9.24) completed neuropsychological testing and MRI. Quantitative DTI metrics were estimated for CC subregions. Group×Region interaction effects were observed on fractional anisotropy (FA; η2p ≥ .21). Follow-up indicated large effects of group (η2p ≥ .26) on splenium FA (boxerscomparisons), but not radial diffusivity (RD). The group of boxers had moderately elevated number of psychiatric symptoms and reduced neuropsychological scores relative to the comparison group. In boxers, years sparring, professional bouts, and knockout history correlated strongly (r > |.40|) with DTI metrics and fine motor dexterity. In the comparison group, splenium FA correlated positively with psychiatric symptoms. In the boxer group, neuropsychological scores correlated with DTI metrics in all CC subregions. Results suggested relative vulnerability of the splenium and, to a lesser extent, the genu to chronic, repetitive head injury from boxing. Dose-dependent associations of professional boxing history extent with DTI white matter structure indices as well as fine motor dexterity were supported. Results indicated that symptoms of depression and executive dysfunction may provide the strongest indicators of global CC disruption from boxing.

10.
Brain Imaging Behav ; 14(5): 1626-1637, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31134584

RESUMO

Mediation analysis was used to investigate the role of white matter integrity in the relationship between injury severity and verbal memory performance in participants with chronic pediatric traumatic brain injury (TBI). DTI tractography was used to measure fractional anisotropy (FA) within the corpus callosum, fornix, cingulum bundles, perforant pathways, and uncinate fasciculi. Injury severity was indexed using Glasgow Coma Scale (GCS) scores obtained at the time of the injury. Verbal memory was measured by performance on the long-delay free recall (LDFR) trial of the California Verbal Learning Test-Children's version. Participants were between the ages of 10-18 and included 21 children with TBI (injured before age 9) and 19 typically-developing children (TDC). Children with TBI showed lower FA across all pathways and poorer LDFR performance relative to TDC. Within the TBI group, mediation analysis revealed neither a significant total effect of GCS on LDFR nor significant direct effects of GCS on LDFR across pathways; however, the indirect effects of GCS on LDFR through FA of the corpus callosum, left perforant pathway, and left uncinate fasciculus were significant and opposite in sign to their respective direct effects. These results suggests that the predictive validity of GCS for LDFR is initially suppressed by the substantial variance accounted for by FA, which is uncorrelated with GCS, and the predictive validity of GCS increases only when FA is considered, and the opposing path is controlled. These findings illustrate the complex associations between acute injury severity, white matter pathways, and verbal memory several years following pediatric TBI.

11.
Brain ; 143(1): 112-130, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794024

RESUMO

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.


Assuntos
Autofagia/genética , Anormalidades Craniofaciais/genética , Fibroblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Atrofia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Surdez/genética , Surdez/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Microscopia de Fluorescência , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Quadriplegia/genética , Quadriplegia/fisiopatologia , Sítios de Splice de RNA/genética , Síndrome
12.
Neurol Genet ; 5(6): e366, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872050

RESUMO

Objective: To describe the findings of histopathology and genotyping studies in affected brain tissue from an individual with phacomatosis pigmentovascularis (PPV). Methods: A retrospective chart review of a 2-year 10-month-old male with a clinical diagnosis of PPV cesiomarmorata (or type V) was performed. Clinical features, brain imaging and histopathology findings, and genotyping studies in his affected brain tissue are summarized. Results: The proband had a clinically severe neurologic phenotype characterized by global developmental delay, generalized hypotonia, and recurrent episodes of cardiac asystole in the setting of status epilepticus. A somatic pathogenic variant in GNA11 (c.547C>T, p.Arg183Cys) was detected in his skin tissue but not in blood (previously published). He underwent an urgent left posterior quadrantectomy for his life-threatening seizures. Histopathology of resected brain tissue showed an increase in leptomeningeal melanocytes and abnormal vasculature, and the exact pathogenic variant in GNA11 (c.547C>T, p.Arg183Cys), previously isolated from his skin tissue but not blood, was detected in his resected brain tissue. Conclusions: The finding of this variant in affected skin and brain tissue of our patient with PPV supports a unifying genetic diagnosis of his neurocutaneous features.

13.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630790

RESUMO

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Assuntos
Variação Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimento Celular/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/metabolismo , Fenótipo , Tubulina (Proteína)/genética
14.
Front Neurol ; 10: 925, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572283

RESUMO

Positive effects of methylphenidate (MPH) on attention and cognitive processing speed have been reported in studies of patients with moderate to severe traumatic brain injury (TBI). Studies which have acquired functional brain imaging before and while using MPH have also found alteration of brain activation while performing a cognitive task; in some studies, this alteration of activation in selective brain regions was also related to improved performance on cognitive tests administered outside of the scanning environment. Enhanced cognitive performance has been reported after single doses of MPH and after daily treatment over durations of up to and exceeding 1 month. Preclinical research and both positron emission tomography and single photon emission tomography of humans have shown that MPH increases extracellular dopamine and norepinephrine; the dose effects of MPH have an inverted U-shaped function where high doses may cause insomnia, nervousness, and increased heart rate among other symptoms and impair cognitive performance, whereas too low a dose fails to improve cognitive performance. In the past 5 years, small clinical trials, and experimental pilot studies have found therapeutic effects of single and repeated low doses of MPH in patients with mild TBI who reported cognitive dysfunction. This literature also suggests that MPH may interact with concurrent cognitive interventions to enhance their effects. This focused review will critically evaluate the recent literature on MPH effects on cognitive dysfunction after mild to moderate TBI. To elucidate the neural mechanisms of MPH effects, this review will also include recent imaging research, preclinical, and experimental human studies.

15.
Ann Clin Transl Neurol ; 6(8): 1395-1406, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31402629

RESUMO

OBJECTIVE: To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS: Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS: Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION: Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.


Assuntos
Canais de Cálcio/genética , Doenças Cerebelares/genética , Epilepsia/genética , Espasmos Infantis/genética , Adulto , Atrofia , Ataxia Cerebelar/genética , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Convulsões , Irmãos
16.
J Neurotrauma ; 36(22): 3164-3171, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31119974

RESUMO

Structural and functional connectivity (FC) after sports-related concussion (SRC) may remain altered in adolescent athletes despite symptom resolution. Little is known, however, about how alterations in structural connectivity and FC co-present in female athletes whose symptom recovery tends to be prolonged. Despite resolution of symptoms, one month after her second SRC, an 18-year-old female athlete had decreased structural connectivity in the corpus callosum and cingulum, with altered FC near those regions, compared with other SRC and orthopedically injured athletes. Findings show persistent effects of SRC on advanced brain imaging and the possibility of greater vulnerability of white matter tracts in females.


Assuntos
Concussão Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Futebol/lesões , Adolescente , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Feminino , Humanos , Imagem por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
17.
Genet Med ; 21(8): 1797-1807, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30679821

RESUMO

PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.


Assuntos
Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Neurodesenvolvimento/genética , Comportamento Problema , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Haploinsuficiência/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteínas Nucleares/genética , Fenótipo , Proteínas/genética , Sequenciamento Completo do Exoma
18.
J Neurotrauma ; 36(2): 239-249, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29786476

RESUMO

To address controversy surrounding the most appropriate comparison group for mild traumatic brain injury (mTBI) research, mTBI patients 12-30 years of age were compared with an extracranial orthopedic injury (OI) patient group and an uninjured, typically developing (TD) participant group with comparable demographic backgrounds. Injured participants underwent subacute (within 96 h) and late (3 months) diffusion tensor imaging (DTI); TD controls underwent DTI once. Group differences in fractional anisotropy (FA) and mean diffusivity (MD) of commonly studied white matter tracts were assessed. For FA, subacute group differences occurred in the bilateral inferior frontal occipital fasciculus (IFOF) and right inferior longitudinal fasciculus (ILF), and for MD, differences were found in the total corpus callosum, right uncinate fasciculus, IFOF, ILF, and bilateral cingulum bundle (CB). In these analyses, differences (lower FA and higher MD) were generally observed between the mTBI and TD groups but not between the mTBI and OI groups. After a 3 month interval, groups significantly differed in left IFOF FA and in right IFOF and CB MD; the TD group had significantly higher FA and lower MD than both injury groups, which did not differ. There was one exception to this pattern, in which the OI group demonstrated significantly lower FA in the left ILF than the TD group, although neither group differed from the mTBI group. The mTBI and OI groups had generally similar longitudinal results. Findings suggest that different conclusions about group-level DTI analyses could be drawn, depending on the selected comparison group, highlighting the need for additional research in this area. Where possible, mTBI studies may benefit from the inclusion of both OI and TD controls.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Grupos Controle , Sistema Musculoesquelético/diagnóstico por imagem , Sistema Musculoesquelético/lesões , Neuroimagem/métodos , Adolescente , Adulto , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Projetos de Pesquisa , Adulto Jovem
19.
Pediatr Radiol ; 49(2): 224-233, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30402807

RESUMO

BACKGROUND: Therapeutic hypothermia is the standard-of-care treatment for infants diagnosed with moderate-to-severe hypoxic-ischemic encephalopathy (HIE). MRI for assessing brain injury is usually performed after hypothermia because of logistical challenges in bringing acutely sick infants receiving hypothermia from the neonatal intensive care unit (NICU) to the MRI suite. Perhaps examining and comparing early cerebral oxygen metabolism disturbances to those after rewarming will lead to a better understanding of the mechanisms of brain injury in HIE and the effects of therapeutic hypothermia. OBJECTIVE: The objectives were to assess the feasibility of performing a novel T2-relaxation under spin tagging (TRUST) MRI technique to measure venous oxygen saturation very early in the time course of treatment, 18-24 h after the initiation of therapeutic hypothermia, to provide a framework to measure neonatal cerebral oxygen metabolism noninvasively, and to compare parameters between early and post-hypothermia MRIs. MATERIALS AND METHODS: Early (18-24 h after initiating hypothermia) MRIs were performed during hypothermia treatment in nine infants with HIE (six with moderate and three with severe HIE). Six infants subsequently had an MRI after hypothermia. Mean values of cerebral blood flow, oxygen extraction fraction, and cerebral metabolic rate of oxygen from MRIs during hypothermia were compared between infants with moderate and severe HIE; and in those with moderate HIE, we compared cerebral oxygen metabolism parameters between MRIs performed during and after hypothermia. RESULTS: During the initial hypothermia MRI at 23.5±5.2 h after birth, infants with severe HIE had lower oxygen extraction fraction (P=0.04) and cerebral metabolic rate of oxygen (P=0.03) and a trend toward lower cerebral blood flow (P=0.33) compared to infants with moderate HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between MRIs during and after hypothermia (although not significantly); cerebral metabolic rate of oxygen (P=0.93) was not different. CONCLUSION: Early MRIs were technically feasible while maintaining hypothermic goal temperatures in infants with HIE. Cerebral oxygen metabolism early during hypothermia is more disturbed in severe HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between early and post-hypothermia scans. A comparison of cerebral oxygen metabolism parameters between early and post-hypothermia MRIs might improve our understanding of the evolution of HIE and the benefits of hypothermia. This approach could guide the use of adjunctive neuroprotective strategies in affected infants.


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Imagem por Ressonância Magnética/métodos , Circulação Cerebrovascular , Estudos de Viabilidade , Feminino , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Oxigênio/metabolismo
20.
Fetal Diagn Ther ; 46(1): 45-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30223262

RESUMO

INTRODUCTION: In a pilot study of chronic maternal hyperoxygenation (CMH) in left heart hypoplasia (LHH), we sought to determine effect estimates of CMH on head size, vascular resistance indices, and neurodevelopment compared to controls. MATERIAL AND METHODS: Nine gravidae meeting the inclusion criteria (fetal LHH, ≥25.9 weeks' gestation, and ≥10% increase in percent aortic flow after acute hyperoxygenation) were prospectively enrolled. Controls were 9 contemporary gravidae with fetal LHH without CMH. Brain growth and Doppler-derived estimates of fetal cerebrovascular and placental resistance were blindly evaluated and compared using longitudinal regression. Postnatal anthropomorphic and neurodevelopmental assessments were compared. RESULTS: There was no difference in baseline fetal measures between groups. There was significantly slower biparietal diameter (BPD) growth in the CMH group (z-score change -0.03 ± 0.02 vs. +0.09 ± 0.05 units/week, p = 0.02). At 6 months postnatal age, the mean head circumference z-score in the CMH group was smaller than that of controls (-0.20 ± 0.58 vs. +0.85 ± 1.11, p = 0.048). There were no differences in neurodevelopmental testing at 6 and 12 months. DISCUSSION: In this pilot study, relatively diminished fetal BPD growth and smaller infant head circumference z-scores at 6 months were noted with in utero CMH exposure.


Assuntos
Circulação Cerebrovascular , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Oxigênio/uso terapêutico , Resistência Vascular , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Feminino , Feto , Humanos , Troca Materno-Fetal , Projetos Piloto , Gravidez , Fluxo Pulsátil , Análise de Regressão , Ultrassonografia Pré-Natal , Artérias Umbilicais/diagnóstico por imagem , Artérias Umbilicais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA