Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 22(2): 239-246, jun. 2019. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-184830

RESUMO

Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations


No disponible


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Nanopartículas Metálicas , Prata/farmacologia , Fluconazol/farmacologia , Nistatina/farmacologia , Aspergillus/ultraestrutura , Candida albicans/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície/efeitos dos fármacos
2.
Int Microbiol ; 22(2): 239-246, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810990

RESUMO

Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 µg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Fluconazol/farmacologia , Nanopartículas Metálicas , Nistatina/farmacologia , Prata/farmacologia , Aspergillus/ultraestrutura , Candida albicans/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície/efeitos dos fármacos
3.
Parasitol Res ; 117(1): 265-271, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29218442

RESUMO

Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P < 0.05) as determined by Trypan blue exclusion assay. In contrast, conjugation of fluconazole with AgNPs had limited effect on its antiamoebic properties. Notably, AgNP-coated drugs inhibited amoebae-mediated host cell cytotoxicity as determined by measuring lactate dehydrogenase release. Overall, here we present the development of a new formulation of more effective antiamoebic agents based on AgNPs coated with drugs that hold promise for future applications.


Assuntos
Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Anfotericina B/farmacologia , Fluconazol/farmacologia , Nanopartículas Metálicas/química , Nistatina/farmacologia , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/genética , Amebíase/parasitologia , Amebicidas/química , Anfotericina B/química , Fluconazol/química , Humanos , Microscopia de Força Atômica , Nistatina/química , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA