Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6739, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469034

RESUMO

Grating interferometry is a promising technique to obtain differential phase contrast images with illumination source of low intrinsic transverse coherence. However, retrieving the phase contrast image from the differential phase contrast image is difficult due to the accumulated noise and artifacts from the differential phase contrast image (DPCI) reconstruction. In this paper, we implemented a deep learning-based phase retrieval method to suppress these artifacts. Conventional deep learning based denoising requires noise/clean image pair, but it is not feasible to obtain sufficient number of clean images for grating interferometry. In this paper, we apply a recently developed neural network called Noise2Noise (N2N) that uses noise/noise image pairs for training. We obtained many DPCIs through combination of phase stepping images, and these were used as input/target pairs for N2N training. The application of the N2N network to simulated and measured DPCI showed that the phase contrast images were retrieved with strongly suppressed phase retrieval artifacts. These results can be used in grating interferometer applications which uses phase stepping method.


Assuntos
Algoritmos , Aprendizado Profundo , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Sci Rep ; 12(1): 3461, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241696

RESUMO

We describe an inverse Talbot-Lau neutron grating interferometer that provides an extended autocorrelation length range for quantitative dark-field imaging. To our knowledge, this is the first report of a Talbot-Lau neutron grating interferometer (nTLI) with inverse geometry. We demonstrate a range of autocorrelation lengths (ACL) starting at low tens of nanometers, which is significantly extended compared to the ranges of conventional and symmetric setups. ACLs from a minimum of 44 nm to the maximum of 3.5 µm were presented for the designed wavelength of 4.4 Å in experiments. Additionally, the inverse nTLI has neutron-absorbing gratings with an optically thick gadolinium oxysulfide (Gadox) structure, allowing it to provide a visibility of up to 52% while maintaining a large field of view of approximately 100 mm × 100 mm. We demonstrate the application of our interferometer to quantitative dark-field imaging by using diluted polystyrene particles in an aqueous solution and silicon comb structures. We obtain quantitative structural information of the sphere size and concentration of diluted polystyrene particles and the period, height, and duty cycle of the silicon comb structures. The optically thick Gadox structure of the analyzer grating also provides improved characteristics for the correction of incoherent neutron scattering in an aqueous solution compared to the symmetric nTLI.

3.
ACS Omega ; 6(48): 32618-32630, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901610

RESUMO

Models of fluid flow are used to improve the efficiency of oil and gas extraction and to estimate the storage and leakage of carbon dioxide in geologic reservoirs. Therefore, a quantitative understanding of key parameters of rock-fluid interactions, such as contact angles, wetting, and the rate of spontaneous imbibition, is necessary if these models are to predict reservoir behavior accurately. In this study, aqueous fluid imbibition rates were measured in fractures in samples of the Eagle Ford Shale using neutron imaging. Several liquids, including pure water and aqueous solutions containing sodium bicarbonate and sodium chloride, were used to determine the impact of solution chemistry on uptake rates. Uptake rate analysis provided dynamic contact angles for the Eagle Ford Shale that ranged from 51 to 90° using the Schwiebert-Leong equation, suggesting moderately hydrophilic mineralogy. When corrected for hydrostatic pressure, the average contact angle was calculated as 76 ± 7°, with higher values at the fracture inlet. Differences in imbibition arising from differing fracture widths, physical liquid properties, and wetting front height were investigated. For example, bicarbonate-contacted samples had average contact angles that varied between 62 ± 10° and ∼84 ± 6° as the fluid rose in the column, likely reflecting a convergence-divergence structure within the fracture. Secondary imbibitions into the same samples showed a much more rapid uptake for water and sodium chloride solutions that suggested alteration of the clay in contact with the solution producing a water-wet environment. The same effect was not observed for sodium bicarbonate, which suggested that the bicarbonate ion prevented shale hydration. This study demonstrates how the imbibition rate measured by neutron imaging can be used to determine contact angles for solutions in contact with shale or other materials and that wetting properties can vary on a relatively fine scale during imbibition, requiring detailed descriptions of wetting for accurate reservoir modeling.

5.
Membranes (Basel) ; 11(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572590

RESUMO

Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO2 is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO2-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity-resulting either from a reduction in the membrane thickness or a change in the polymer chemistry-results in faster CO2 migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO2-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance.

6.
ACS Appl Mater Interfaces ; 12(49): 54585-54595, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236877

RESUMO

Despite the advantages of CO2 electrolyzers, efficiency losses due to mass and ionic transport across the membrane electrode assembly (MEA) are critical bottlenecks for commercial-scale implementation. In this study, more efficient electrolysis of CO2 was achieved by increasing cation exchange membrane (CEM) hydration via the humidification of the CO2 reactant inlet stream. A high current density of 755 mA/cm2 was reached by humidifying the reactant CO2 in a MEA electrolyzer cell featuring a CEM. The power density was reduced by up to 30% when the fully humidified reactant CO2 was introduced while operating at a current density of 575 mA/cm2. We reduced the ohmic losses of the electrolyzer by fourfold at 575 mA/cm2 by fully humidifying the reactant CO2. A semiempirical CEM water uptake model was developed and used to attribute the improved performance to 11% increases in membrane water uptake and ionic conductivity. Our CEM water uptake model showed that the increase in ohmic losses and the limitation of ionic transport were the result of significant dehydration at the central region of the CEM and the anode gas diffusion electrode-CEM interface region, which exhibited a 2.5% drop in water uptake.

7.
Phys Rev Lett ; 125(11): 110801, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976018

RESUMO

We experimentally demonstrate that electrically neutral particles, neutrons, can be used to directly visualize the electrostatic field inside a target volume that can be physically isolated or occupied. Electric field images are obtained using a spin-polarized neutron beam with a recently developed polarimetry method for polychromatic beams that permits detection of a small angular change in spin orientation. This Letter may enable a new diagnostic technique sensitive to the structure of electric potential, electric polarization, charge distribution, and dielectric constant by imaging spatially dependent electric fields in objects that cannot be accessed by other probes.

8.
Opt Express ; 28(16): 23284-23293, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752327

RESUMO

We study an analyzer grating based on a scintillation light blocker for a Talbot-Lau grating interferometer. This is an alternative way to analyze the Talbot self-image without the need for an often difficult to fabricate absorption grating for the incident radiation. The feasibility of this approach using a neutron beam has been evaluated and experiments have been conducted at the cold neutron imaging facility of the NIST center for Neutron Research. The neutron grating interferometer with the proposed analyzer grating successfully produced attenuation, differential phase, and dark-field contrast images. In addition, numerical simulations were performed to simulate the Talbot pattern and visibility using scintillation screens of different thicknesses and there is good agreement with the experimental measurements. The results show potential for reducing the difficulty of fabricating analyzer grating, and a possibility for the so-called shadow effect to be eliminated and large-area gratings to be produced, especially when applied to X-rays. We report the performance of the analyzer grating based on a light blocker and evaluate its feasibility for the grating interferometer.

9.
Nat Commun ; 11(1): 3561, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678101

RESUMO

There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-µV h-1 - the best-reported durability to date.

10.
Sci Rep ; 10(1): 9891, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555276

RESUMO

In Talbot-Lau interferometry, the sample position yielding the highest phase sensitivity suffers from strong geometric blur. This trade-off between phase-sensitivity and spatial resolution is a fundamental challenge in such interferometric imaging applications with either neutron or conventional x-ray sources due to their relatively large beam-defining apertures or focal spots. In this study, a deep learning method is introduced to estimate a high phase-sensitive and high spatial resolution image from a trained neural network to attempt to avoid the trade-off for both high phase-sensitivity and high resolution. To realize this, the training data sets of the differential phase contrast images at a pair of sample positions, one of which is close to the phase grating and the other close to the detector, are numerically generated and are used as the inputs for the training data set of a generative adversarial network. The trained network has been applied to the real experimental data sets from a neutron grating interferometer and we have obtained improved images both in phase-sensitivity and spatial resolution.

11.
J Imaging ; 6(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34460541

RESUMO

We present and compare the designs of three types of neutron microscopes for high-resolution neutron imaging. Like optical microscopes, and unlike standard neutron imaging instruments, these microscopes have both condenser and image-forming objective optics. The optics are glancing-incidence axisymmetric mirrors and therefore suitable for polychromatic neutron beams. The mirrors are designed to provide a magnification of 10 to achieve a spatial resolution of better than 10 µm. The resolution of the microscopes is determined by the mirrors rather than by the L/Dratio as in conventional pinhole imaging, leading to possible dramatic improvements in the signal rate. We predict the increase in the signal rate by at least two orders of magnitude for very high-resolution imaging, which is always flux limited. Furthermore, in contrast to pinhole imaging, in the microscope, the samples are placed far from the detector to allow for a bulky sample environment without sacrificing spatial resolution.

12.
J Power Sources ; 4722020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34848919

RESUMO

Platinum group metal-free (PGM-free) catalysts are a low-cost alternative to expensive PGM catalysts for polymer electrolyte fuel cells. However, due to the low volumetric activity of PGM-free catalysts, the catalyst layer thickness of the PGM-free catalyst electrode is an order of magnitude higher than PGM based electrodes. The thick PGM-free electrodes suffer from increased transport resistance and poor water management, which ultimately limits the fuel cell performance. This manuscript presents the study of water management in the PGM-free electrodes to understand the transport limitations and improve fuel cell performance. In-operando neutron imaging is performed to estimate the water content in different components across the fuel cell thickness. Water saturation in thick PGM electrodes, with similar catalyst layer thickness to PGM-free electrodes, is lower than in the PGM-free electrodes irrespective of the operating conditions, due to high water retention by PGM-free catalysts. Improvements in fuel cell performance are accomplished by enhancing water removal from the flooded PGM-free electrode in three ways: (i) enhanced water removal with a novel microporous layer with hydrophilic pathways incorporated through hydrophilic additives, (ii) water removal through anode via novel GDL in the anode, and (iii) lower water saturation in PGM-free electrode structures with increased catalyst porosity.

13.
Energy Convers Manag ; 2132020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34857980

RESUMO

In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport overpotential with increasing temperature. We observed an increase in anode oxygen gas content with increasing temperature, which was counter-intu.itive to the trends in mass transport overpotential. We attributed this counterintuitive decrease in mass transport overpotential to the enhanced reactant distribution in the flow channels as a result of the temperature increase, determined via a one-dimensional analytical model. We further determined that gas accumulation and fluid property changes are competing, temperature-dependent contributors to mass transport overpotential; however, liquid water viscosity changes led to the dominate enhancement of reactant water distributions in the anode. We present this temperature-dependent mass transport overpotential as a great opportunity for further increasing the voltage efficiency of PEM electrolyzers.

14.
J Electrochem Soc ; 167(14)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34876705

RESUMO

In efforts to increase the energy density of lithium-ion batteries, researchers have attempted to both increase the thickness of battery electrodes and increase the relative fractions of active material. One system that has both of these attributes are sintered thick electrodes comprised of only active material. Such electrodes have high areal capacities, however, detailed understanding is needed of their transport properties, both electronic and ionic, to better quantify their limitations to cycling at higher current densities. In this report, efforts to improve models of the electrochemical cycling of sintered electrodes are described, in particular incorporation of matrix electronic conductivity which is dependent on the extent of lithiation of the active material and accounting for initial gradients in lithiation of active material in the electrode that develop as a consequence of transport limitations during charging cycles. Adding in these additional considerations to a model of sintered electrode discharge resulted in improved matching of experimental cell measurements.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35003760

RESUMO

Lithium-ion batteries have received significant research interest due to their advantages in energy and power density, which are important to enabling many devices. One route to further increase energy density is to fabricate thicker electrodes in the battery cell; however, careful consideration must be taken when designing electrodes as to how increasing the thickness impacts the multiscale and multiphase molecular transport processes, which can limit the overall battery operating power. Design of these electrodes necessitates probing the molecular processes when the battery cell undergoes electrochemical charge/discharge. One tool for in situ insights into the cell is neutron imaging, because neutron imaging can provide information of where electrochemical processes occur within the electrodes. In this manuscript, neutron imaging is applied to track the lithiation/delithiation processes within electrodes at different current densities for a full cell with a thick sintered Li4Ti5O12 anode and LiCoO2 cathode. The neutron imaging reveals that the molecular distribution of Li+ during discharge within the electrode is sensitive to the current density, or equivalently discharge rate. An electrochemical model provides additional insights into the limiting processes occurring within the electrodes. In particular, the impact of tortuosity and molecular transport in the liquid phase within the interstitial regions in the electrodes are considered, and the influence of tortuosity was shown to be highly sensitive to the current density. Qualitatively, the experimental results suggest that the electrodes behave consistent with the packed hard sphere approximation of Bruggeman tortuosity scaling, which indicates that the electrodes are largely mechanically intact but also that a design that incorporates tunable tortuosity could improve the performance of these types of electrodes.

16.
Rev Sci Instrum ; 90(7): 073704, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370431

RESUMO

A symmetric Talbot-Lau neutron grating interferometer has been developed for achieving high phase sensitivity. The gratings for the interferometer have been designed by maximizing the intergrating distances available at the experimental facility and optimizing the period of the gratings. The phase sensitivity in a Talbot-Lau grating interferometer has been mathematically modeled and analyzed and compared with experimental data. Evaluation experiments have been performed at the cold neutron imaging facility of the NIST Center for Neutron Research. The symmetric Talbot-Lau neutron grating interferometer exhibits distinct advantages in terms of high sensitivity and wide range for dark-field contrast imaging. Also, the fabrication of gratings is made easier, simpler, and more economical by the Gadox powder filling method, which gives them excellent phase contrast compared with other geometric Talbot-Lau neutron grating interferometers.

17.
Scr Mater ; 1582019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34858076

RESUMO

Micrometer to centimeter scale analyses of the crystalline phase volume fractions in a trip-assisted duplex stainless steel were performed under loading using electron backscatter diffraction (EBSD), in situ neutron diffraction, and energy selective neutron imaging (ESNI) methods. In contrast to the localized investigations of EBSD, ESNI provides macroscopic spatial distributions in a volume-averaged manner over the entire specimen with a spatial resolution of about 65 µm. The ESNI shows that the martensite is concentrated on the necking region and estimates its volume fraction of 14% at a strain of 0.2, which is comparable to the neutron diffraction result.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35023885

RESUMO

We performed neutron imaging of ferromagnetic transitions in Ni3Al and HgCr2Se4 crystals. These neutron depolarization measurements revealed bulk magnetic inhomogeneities in the ferromagnetic transition temperature with spatial resolution of about 100 µm. To obtain such spatial resolution, we employed a novel neutron microscope equipped with Wolter mirrors as a neutron image-forming lens and a focusing neutron guide as a neutron condenser lens. The images of Ni3Al show that the sample does not homogeneously go through the ferromagnetic transition; the improved resolution allowed us to identify a distribution of small grains with slightly off-stoichiometric composition. Additionally, neutron depolarization imaging experiments on the chrome spinel, HgCr2Se4, under pressures up to 15 kbar highlight the advantages of the new technique especially for small samples or sample environments with restricted sample space. The improved spatial resolution enables one to observe domain formation in the sample while decreasing the acquisition time despite having a bulky pressure cell in the beam.

19.
Rev Sci Instrum ; 89(3): 033701, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604735

RESUMO

We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

20.
Cem Concr Compos ; 87: 63-72, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29503512

RESUMO

There are conflicting views in the literature concerning the optimum moisture state for an existing substrate prior to the application of a repair material. Both saturated-surface-dry (SSD) and dry substrates have been found to be preferable in a variety of studies. One confounding factor is that some studies evaluate bonding of the repair material to the substrate via pull-off (direct tension) testing, while others have employed some form of shear specimens as their preferred testing configuration. Available evidence suggests that dry substrate specimens usually perform equivalently or better in shear testing, while SSD ones generally exhibit higher bond strengths when a pull-off test is performed, although exceptions to these trends have been observed. This paper applies a variety of microstructural characterization tools to investigate the interfacial microstructure that develops when a fresh repair material is applied to either a dry or SSD substrate. Simultaneous neutron and X-ray radiography are employed to observe the dynamic microstructural rearrangements that occur at this interface during the first 4 h of curing. Based on the differences in water movement and densification (particle compaction) that occur for the dry and SSD specimens, respectively, a hypothesis is formulated as to why different bond tests may favor one moisture state over the other, also dependent on their surface roughness. It is suggested that the compaction of particles at a dry substrate surface may increase the frictional resistance when tested under slant shear loading, but contribute relatively little to the bonding when the interface is submitted to pull-off forces. For maximizing bond performance, the fluidity of the repair material and the roughness and moisture state of the substrate must all be given adequate consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...