Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Microbiol Biotechnol ; 30(8): 1109-1115, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627758


The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.

Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Desenvolvimento de Medicamentos , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , Infecções por Coronavirus/prevenção & controle , Humanos , Imunidade Inata , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/uso terapêutico
J Innate Immun ; 9(2): 217-228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068663


Collectins are C-type lectins that are involved in innate immunity as pattern recognition molecules. Recently, collectin kidney 1 (CL-K1) has been discovered, and in vitro studies have shown that CL-K1 binds to microbes and activates the lectin complement pathway. However, in vivo functions of CL-K1 against microbes have not been elucidated. To investigate the biological functions of CL-K1, we generated CL-K1 knockout (CL-K1-/-) mice and then performed a Streptococcus pneumoniae infection analysis. First, we found that recombinant human CL-K1 bound to S. pneumoniae in a calcium-dependent manner, and induced complement activation. CL-K1-/- mice sera formed less C3 deposition on S. pneumoniae. Furthermore, immunofluorescence analysis in the wild-type (WT) mice demonstrated that CL-K1 and C3 were localized on S. pneumoniae in infected lungs. CL-K1-/- mice revealed decreased phagocytosis of S. pneumoniae. Consequently, less S. pneumoniae clearance was observed in their lungs. CL-K1-/- mice showed severe pulmonary inflammation and weight loss in comparison with WT mice. Finally, the decreased clearance and severe pulmonary inflammation caused by S. pneumoniae infection might cause higher CL-K1-/- mice lethality. Our results suggest that CL-K1 might play an important role in host protection against S. pneumoniae infection through the activation of the lectin complement pathway.

Colectinas/metabolismo , Complemento C3/metabolismo , Pulmão/imunologia , Infecções Pneumocócicas/imunologia , Pneumonia/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Streptococcus pneumoniae/fisiologia , Animais , Carga Bacteriana , Colectinas/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Humanos , Imunidade Inata , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Receptores de Reconhecimento de Padrão/genética , Transgenes/genética
Biochim Biophys Acta Gen Subj ; 1861(2): 1-14, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864148


BACKGROUND: Pentraxins (PTXs) are a superfamily of multifunctional conserved proteins involved in acute-phase responses. Recently, we have shown that collectin placenta 1 (CL-P1) and C-reactive protein (CRP) mediated complement activation and failed to form terminal complement complex (TCC) in normal serum conditions because of complement factor H inhibition. METHODS: We used CL-P1 expressing CHO/ldlA7 cells to study the interaction with PTXs. Soluble type CL-P1 was used in an ELISA assay for the binding, C3 and TCC deposition experiments. Furthermore, we used our previously established CL-P1 expressing HEK293 cells for the C3 fragment and TCC deposition assay. RESULTS: We demonstrated that CL-P1 also bound serum amyloid p component (SAP) and pentraxin 3 (PTX3) to activate the classical pathway and the alternative pathway using factor B. CRP and PTX3 further amplified complement deposition by properdin. We found that CRP and PTX3 recruit CFH, whereas SAP recruits C4 binding protein on CL-P1 expressing cell surfaces to prevent the formation of TCC in normal serum conditions. In addition, depletion of CFH, C4BP and complement factor I (CFI) failed to prevent TCC formation both in ELISA and cell experiments. Furthermore, soluble complement receptor 1, an inhibitor of all complement pathways prevents PTX induced TCC formation. CONCLUSION: Our current study hypothesizes that the interaction of pentraxins with CL-P1 is involved in complement activation. GENERAL SIGNIFICANCE: CL-P1 might generally inhibit PTX induced complement activation and host damage to protect self-tissues.

Proteína C-Reativa/metabolismo , Colectinas/metabolismo , Ativação do Complemento/fisiologia , Componente Amiloide P Sérico/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Células CHO , Linhagem Celular , Fator H do Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/fisiologia , Cricetulus , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
Biochim Biophys Acta ; 1860(6): 1118-28, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922829


BACKGROUND: C-reactive protein (CRP) is a plasma pentraxin family protein that is massively induced as part of the innate immune response to infection and tissue injury. CRP and other pentraxin proteins can activate a complement pathway through C1q, collectins, or on microbe surfaces. It has been found that a lectin-like oxidized LDL receptor 1 (LOX-1), which is an endothelial scavenger receptor (SR) having a C-type lectin-like domain, interacts with CRP to activate the complement pathway using C1q. However it remains elusive whether other lectins or SRs are involved in CRP-mediated complement activation and the downstream effect of the complement activation is also unknown. METHODS: We prepared CHO/ldlA7 cells expressing collectin placenta-1 (CL-P1) and studied the interaction of CRP with cells. We further used ELISA for testing binding between proteins. We tested for C3 fragment deposition and terminal complement complex (TCC) formation on HEK293 cells expressing CL-P1. RESULTS: Here, we demonstrated that CL-P1 bound CRP in a charge dependent manner and the interaction of CRP with CL-P1 mediated a classical complement activation pathway through C1q and additionally drove an amplification pathway using properdin. However, CRP also recruits complement factor H (CFH) on CL-P1 expressing cell surfaces, to inhibit the formation of a terminal complement complex in normal complement serum conditions. GENERAL SIGNIFICANCE: The interaction of collectin CL-P1 with CFH might be key for preventing attack on "self" as a result of complement activation induced by the CL-P1 and CRP interaction.

Proteína C-Reativa/química , Colectinas/química , Ativação do Complemento , Receptores Depuradores/química , Animais , Proteína C-Reativa/fisiologia , Células CHO , Colectinas/fisiologia , Fator H do Complemento/química , Cricetulus , Células HEK293 , Humanos , Receptores Depuradores/fisiologia
Biochim Biophys Acta ; 1840(12): 3345-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25199873


BACKGROUND: Collectins are considered to play a role in host defense via complement activation and opsonization, and are composed of a collagen-like domain and a carbohydrate recognition domain (CRD). Collectin placenta 1 (CL-P1) showed scavenger receptor activity as functions in vitro, and has three candidate domains: a coiled-coil domain, a collagen-like domain and CRD. METHODS: We constructed seven types of CL-P1 deletion mutants to determine the site of each ligand binding domain, and observed whether the specific binding to sugar ligand, microbes, or oxidized LDL decreases or not in cells with CL-P1 deletion mutants and CL-P1 containing mutations of amino acid, respectively. RESULTS: CL-P1 mainly interacted with ligands of microbes through the collagen-like domain and it binds a sugar ligand through the CRD. Additionally it could bind oxidized low density lipoprotein (OxLDL) due to the coiled-coil domain as well as the collagen-like domain. This binding study using mutants at three positively charged sites in the collagen-like domain reveals that the site of R496 K499 K502 plays the most important role in ligand binding functions for microbes and OxLDL. CONCLUSIONS: CL-P1 has three unique functional domains: the collagen-like domain mainly acts against most negatively charged ligands, and the CRD specifically does against sugar substances, while the coiled-coil domain additionally acts on modified LDL. GENERAL SIGNIFICANCE: We considered that the binding activity for various ligands due to the association of a coiled-coil domain, a collagen-like domain and/or a CRD in CL-P1, might play a role in physiological functions in the animal body.