Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 731: 138955, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32417473

RESUMO

Short-term agronomic and environmental benefits are fundamental factors in encouraging farmers to use biochar on a broad scale. The short-term impacts of forest residue biochar (BC) on the productivity and carbon (C) storage of arable boreal clay soil were studied in a field experiment. In addition, rain simulations and aggregate stability tests were carried out to investigate the potential of BC to reduce nutrient export to surface waters. A BC addition of 30 t ha-1 increased soil test phosphorus and decreased bulk density in the surface soil but did not significantly change pH or water retention properties, and most importantly, did not increase the yield. There were no changes in the bacterial or fungal communities, or biomasses. Soil basal respiration was higher in BC-amended plots in the spring, but no differences in respiration rates were detected in the fall two years after the application. Rain simulation experiments did not support the use of BC in reducing erosion or the export of nutrients from the field. Of the C added, on average 80% was discovered in the 0-45 cm soil layer one year after the application. Amendment of boreal clay soil with a high rate of BC characterized by a moderately alkaline pH, low surface functionalities, and a recalcitrant nature, did not induce such positive impacts that would unambiguously motivate farmers to invest in BC. BC use seems unviable from the farmer's perspective but could play a role in climate change mitigation, as it will likely serve as long-term C storage.


Assuntos
Argila , Solo , Carvão Vegetal , Florestas
2.
Environ Sci Pollut Res Int ; 25(26): 25648-25658, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28342082

RESUMO

Pore space characteristics of biochars may vary depending on the used raw material and processing technology. Pore structure has significant effects on the water retention properties of biochar amended soils. In this work, several biochars were characterized with three-dimensional imaging and image analysis. X-ray computed microtomography was used to image biochars at resolution of 1.14 µm and the obtained images were analysed for porosity, pore size distribution, specific surface area and structural anisotropy. In addition, random walk simulations were used to relate structural anisotropy to diffusive transport. Image analysis showed that considerable part of the biochar volume consist of pores in size range relevant to hydrological processes and storage of plant available water. Porosity and pore size distribution were found to depend on the biochar type and the structural anisotopy analysis showed that used raw material considerably affects the pore characteristics at micrometre scale. Therefore, attention should be paid to raw material selection and quality in applications requiring optimized pore structure.


Assuntos
Carvão Vegetal , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Difusão , Porosidade , Água/química
3.
J Environ Qual ; 45(3): 977-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136165

RESUMO

Soil test P (STP) concentration indicates whether annual P applications can be expected to give yield increases and can also indicate an elevated risk of P mobilization and potential for P transfer to surface waters and groundwater from a particular field. Changes in STP with time thus project agronomic benefits and environmental risks of different P use strategies. To predict STP changes with time, we constructed a simple dynamic model for which the input variables are P balance and initial STP. The model parameters (soil type-specific constants) were fitted using data originating from 44 P fertilizer experiments with different P rates. Model performance was evaluated using independent data sets that either had reasonably accurate input values ( = 103) or were obtained from farmers through interviews ( = 638). The simulations were in agreement with measured STP changes for both evaluation data sets when fittings were performed separately for four main soil types (clays, silts, coarse mineral soils, and organic soils). Statistical analysis confirmed that the model captured the trends in STP (NHOAc test) with acceptable accuracy and precision, with of 0.83 and 0.66 for the data with more accurate input and for farmer interview data, respectively; the corresponding model efficiency statistics were 0.88 and 0.66. The model is not restricted to use with one soil test, as fittings for several different types of soil tests can be generated. In this study, we fitted the model for Olsen P data retrieved from the literature. Agronomic use of the model includes evaluation of P use strategies, e.g., when a certain STP level is targeted or when long-term economy of P use is calculated. In an environmental context, the model can be used to predict STP changes with time under variable P balance regimes, which is essential for realistic assessment of changes in the potential for dissolved P losses.


Assuntos
Fósforo/química , Poluentes do Solo/química , Fertilizantes , Solo
4.
PLoS One ; 6(8): e22962, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886771

RESUMO

We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.


Assuntos
Células/metabolismo , Citoplasma/metabolismo , Mamíferos/metabolismo , Proteínas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Gatos , Simulação por Computador , Difusão , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Porosidade , Reprodutibilidade dos Testes
5.
Phys Rev Lett ; 100(24): 246001, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643602

RESUMO

On hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, where gas bubbles at the surface can have a strong impact on a detected slip. We present two-phase lattice Boltzmann simulations of a Couette flow over structured surfaces with attached gas bubbles. Even though the bubbles add slippery surfaces to the channel, they can cause negative slip to appear due to the increased roughness. The simulation method used allows the bubbles to deform due to viscous stresses. We find a decrease of the detected slip with increasing shear rate which is in contrast to some recent experimental results implicating that bubble deformation cannot account for these experiments. Possible applications of bubble surfaces in microfluidic devices are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA