Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(41): 23445-23465, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664565

RESUMO

Synchrotron-based techniques have been key tools in the discovery, understanding, and development of battery materials. In this review, some of the most suitable X-ray spectroscopy related techniques employed for addressing diverse scientific cases connected to battery science are highlighted. Furthermore, current shortcomings, intrinsic limitations, and ongoing challenges of individual techniques are pointed out, providing an outlook of future trends that are relevant to the battery research community. In particular, the ongoing development of next generation synchrotrons, machine learning algorithms for data analysis and combined theoretical/experimental approaches will enhance the already powerful assets of these advanced spectroscopic methods.

2.
Nat Mater ; 20(11): 1545-1550, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326505

RESUMO

Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.


Assuntos
Eletrólitos , Lítio , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Lítio/química
3.
Inorg Chem ; 60(10): 7217-7227, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33956446

RESUMO

The effect of crystallizing solution chemistry on the chemistry of subsequently as-grown materials was investigated for Mo-substituted iron oxides prepared by thermally activated co-precipitation. In the presence of Mo ions, we find that varying the oxidation state of the iron precursor from Fe(II) to Fe(III) causes a progressive loss of atomic long-range order with the stabilization of 2-4 nm particles for the sample prepared with Fe(III). The oxidation state of the Fe precursor also affects the distribution of Fe and Mo cations within the spinel structure. Increasing the Fe precursor oxidation state gives decreased Fe-ion occupation and increased Mo-ion occupation of tetrahedral sites, as revealed by the extended X-ray absorption fine structure. The stabilization of Mo within tetrahedral sites appears to be unexpected, considering the octahedral preferred coordination number of Mo(VI). The analysis of the atomic structure of the sample prepared with Fe(III) indicates a local ordering of vacancies and that the occupation of tetrahedral sites by Mo induces a contraction of the interatomic distances within the polyhedra as compared to Fe atoms. Moreover, the occupancy of Mo into the thermodynamic site preference of a Mo dopant in Fe2O3 assessed by density functional theory calculations points to a stronger preference for Mo substitution at octahedral sites. Hence, we suggest that the synthetized compound is thermodynamically metastable, that is, kinetically trapped. Such a state is suggested to be a consequence of the tetrahedral site occupation by Mo ions. The population of these sites, known to be reactive sites enabling particle growth, is concomitant with the stabilization of very small particles. We confirmed our hypothesis by using a blank experiment without Mo ions, further supporting the impact of tetrahedral Mo ions on the growth of iron oxide nanoparticles. Our findings provide new insights into the relationships between the Fe-chemistry of the crystallizing solution and the structural features of the as-grown Mo-substituted Fe-oxide materials.

4.
Nat Chem ; 13(11): 1070-1080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34531571

RESUMO

Anionic redox is a double-edged sword for Li-ion cathodes because it offers a transformational increase in energy density that is also negated by several detrimental drawbacks to its practical implementation. Among them, voltage hysteresis is the most troublesome because its origin is still unclear and under debate. Herein, we tackle this issue by designing a prototypical Li-rich cation-disordered rock-salt compound Li1.17Ti0.33Fe0.5O2 that shows anionic redox activity and exceptionally large voltage hysteresis while exhibiting a partially reversible Fe migration between octahedral and tetrahedral sites. Through combined in situ and ex situ spectroscopic techniques, we demonstrate the existence of a non-equilibrium (adiabatic) redox pathway enlisting Fe3+/Fe4+ and O redox as opposed to the equilibrium (non-adiabatic) redox pathway involving sole O redox. We further show that the charge transfer from O(2p) lone pair states to Fe(3d) states involving sluggish structural distortion is responsible for voltage hysteresis. This study provides a general understanding of various voltage hysteresis signatures in the large family of Li-rich rock-salt compounds.

5.
Small ; 16(33): e2002855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32656960

RESUMO

In nanosized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. In order to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy is successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments are obtained in real time upon cycling the electrode, which allows investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3 -edge measurements point out the involvement of the Fe3+ /Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4 . Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive materials.

6.
Nat Commun ; 11(1): 1252, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144249

RESUMO

High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for Li1.2Ni0.13Mn0.54Co0.13O2 electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A' formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P" phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of Li1.2Ni0.13Mn0.54Co0.13O2 and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.

7.
ACS Appl Mater Interfaces ; 12(4): 4510-4519, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31850732

RESUMO

Recently, because of sustainability issues dictated by societal demands, more importance has been given to aqueous systems and especially to proton-based batteries. However, the mechanisms behind the processes leading to energy storage in such systems are still not elucidated. Under this scope, our study is structured on the selection of a model electrode material, the protonic phase HxIrO4, and the scrutiny of the interfacial processes through suitable analytical tools. Herein, we employed operando electrochemical quartz crystal microbalance (EQCM) combined with electrochemical impedance spectroscopy (EIS) to provide new insights into the mechanism intervening at the electrode-electrolyte interface. First, we demonstrated that not only the surface or near surface but the whole particle participates in the cationic redox process. Second, we proved that the contribution of the proton on the overall potential window together with the incorporation of water at low potentials solely. This is explained by the fact that water molecules permit a further insertion of protons in the material by shielding the proton charge but at the expense of the proton kinetic properties. These findings shed a new light on the importance of water molecules in the ion-insertion mechanisms taking place at the electrode-electrolyte interface of aqueous proton-based batteries. Overall, the present results further highlight the richness of the EQCM-based methods for the battery field in offering mechanistic insights that are crucial for the understanding of interfaces and charge storage in insertion compounds.

8.
ACS Appl Mater Interfaces ; 11(42): 38808-38818, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31560192

RESUMO

We here present the synthesis of a new material, Na3(VO)Fe(PO4)2F2, by the sol-gel method. Its atomic and electronic structural descriptions are determined by a combination of several diffraction and spectroscopy techniques such as synchrotron X-ray powder diffraction and synchrotron X-ray absorption spectroscopy at V and Fe K edges, 57Fe Mössbauer, and 31P solid-state nuclear magnetic resonance spectroscopy. The crystal structure of this newly obtained phase is similar to that of Na3(VO)2(PO4)2F, with a random distribution of Fe3+ ions over vanadium sites. Even though Fe3+ and V4+ ions situate on the same crystallographic position, their local environment can be studied separately using 57Fe Mössbauer and X-ray absorption spectroscopy at Fe and V K edges, respectively. The Fe3+ ion resides in a symmetric octahedral environment, while the octahedral site of V4+ is greatly distorted due to the presence of the vanadyl bond. No electrochemical activity of the Fe4+/Fe3+ redox couple is detected, at least up to 5 V, whereas the reduction of Fe3+ to Fe2+ has been observed at ∼1.5 V versus Na+/Na through the insertion of 0.5 Na+ into Na3(VO)Fe(PO4)2F2. Comparing to Na3(VO)2(PO4)2F, the electrochemical profile of Na3(VO)Fe(PO4)2F2 in the same cycling condition shows a smaller polarization which could be due to a slight improvement in Na+ diffusion process thanks to the presence of Fe3+ in the framework. Furthermore, the desodiation mechanism occurring upon charging is investigated by operando synchrotron X-ray diffraction and operando synchrotron X-ray absorption at V K edge.

9.
J Am Chem Soc ; 141(29): 11452-11464, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31290652

RESUMO

Disordered rock salt cathodes showing both anionic and cationic redox are being extensively studied for their very high energy storage capacity. Mn-based disordered rock salt compounds show much higher energy efficiency compared to the Ni-based materials as a result of the different voltage hysteresis, 0.5 and 2 V, respectively. To understand the origin of this difference, we herein report the design of two model compounds, Li1.3Ni0.27Ta0.43O2 and Li1.3Mn0.4Ta0.3O2, and study their charge compensation mechanism through the uptake and removal of Li via an arsenal of analytical techniques. We show that the different voltage hysteresis with Ni or Mn substitution is due to the different reduction potential for anionic redox. We rationalized such a finding by DFT calculations and propose this phenomenon to be nested in the smaller charge transfer band gap of the Ni-based compounds compared to that of the Mn ones. Altogether, these findings provide vital guidelines for designing high-capacity disordered rock salt cathode materials based on anionic redox activity for the next generation of Li ion batteries.

10.
Chem Mater ; 30(11): 3882-3893, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30057438

RESUMO

The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O22- groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty σ* antibonding O-O states limits the reversibility of the electrochemical reactions when the O22-/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O22- states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.

11.
Environ Sci Process Impacts ; 20(6): 965-976, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29790534

RESUMO

The problem of high levels of chromium is one of the most important issues in soils of the Mediterranean area, in particular those deriving from ophiolitic parent materials. Very often the chromium concentration is greater than the threshold values of legislation on soil pollution and the knowledge of the origin of contamination (natural or anthropogenic) is important to formulate risk characterization. This study evaluated the soils from three coastal areas of the Cecina Valley (Tuscany, Italy) to understand the origin of chromium in the soils, where high levels of hexavalent chromium were found in well and spring waters of the areas. The main soil characteristics and the correlations among the values of chromium and nickel were determined. Chromium speciation was evaluated by synchrotron radiation X-ray absorption spectroscopy. The results showed the presence of only trivalent chromium in soil and a positive linear correlation between chromium and nickel (e.g. r = 0.76 for the Marina di Bibbona-Bolgheri area), corroborating the hypothesis of a geogenic origin of contamination. This hypothesis was also supported by the low CRI index for the soils with high total Cr content, indicating a higher presence of refractory minerals in the Marina di Bibbona-Bolgheri area than Cecina and Collemezzano areas. The refractory material found in soils was attributed to the presence of ophiolite outcrops in the surroundings and their sedimentary remnants. The weathering of ultramafic-derived constituents and their regional-scale transport are believed to be responsible for the enrichment of chromium and nickel in the investigated soils.


Assuntos
Cromo/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Itália , Níquel/análise , Solo/química
12.
Nanoscale ; 10(16): 7472-7483, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637951

RESUMO

We show that using the same reaction procedure, by hindering or allowing the formation of a reaction intermediate, the Ag+dodecanethiolate polymeric complex, it is possible to selectively obtain Ag dodecanethiolate nanoparticles or Ag dodecanethiolate nanoclusters in the size range 4-2 nm. Moreover, the Ag dodecanethiolate nanoclusters display a lamellar superstructure templated from the precursor Ag+dodecanethiolate polymeric complex. A plausible formation mechanism is illustrated where, starting from the precursor and scaffold lamellar Ag+ thiolate polymeric complex, first the nanocluster Agn0 core is formed by reduction of isoplanar Ag+ ions, followed by Ag+ thiolate units that build protection, the nanocluster shell, around the core. The nanoclusters are characterized by elemental analyses, XRD, ATR-FTIR, XPS, XAS, MALDI, ESI, UV-Vis and fluorescence measurements. The luminescent Ag15(dodecanethiolate)11·2H2O nanocluster is achieved in good yield after 4 hours of reaction whereas after 2 hours, the luminescent Ag35(dodecanethiolate)16 is isolated. Both Ag nanoclusters present emission bands in the range 330-450 nm, the shifting depending on the excitation wavelength. This phenomenon is attributed to a possible dipolar state causing distribution in energies due to variability of dipole-dipole interactions. Moreover, both nanoclusters further present a NIR emission at about 700 nm independent from the excitation wavelength. Thanks to their optical and structural properties, the synthesized nanoclusters, perfect molecular/nanoparticle hybrids, have great potentiality for new applications in nanotechnologies.

13.
Nat Commun ; 8(1): 2219, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263321

RESUMO

Reversible anionic redox has rejuvenated the search for high-capacity lithium-ion battery cathodes. Real-world success necessitates the holistic mastering of this electrochemistry's kinetics, thermodynamics, and stability. Here we prove oxygen redox reactivity in the archetypical lithium- and manganese-rich layered cathodes through bulk-sensitive synchrotron-based spectroscopies, and elucidate their complete anionic/cationic charge-compensation mechanism. Furthermore, via various electroanalytical methods, we answer how the anionic/cationic interplay governs application-wise important issues-namely sluggish kinetics, large hysteresis, and voltage fade-that afflict these promising cathodes despite widespread industrial and academic efforts. We find that cationic redox is kinetically fast and without hysteresis unlike sluggish anions, which furthermore show different oxidation vs. reduction potentials. Additionally, more time spent with fully oxidized oxygen promotes voltage fade. These fundamental insights about anionic redox are indispensable for improving lithium-rich cathodes. Moreover, our methodology provides guidelines for assessing the merits of existing and future anionic redox-based high-energy cathodes, which are being discovered rapidly.

14.
Sci Rep ; 6: 26031, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189251

RESUMO

Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO4(2-) ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO4(2-) ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.

15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 71(Pt 6): 722-6, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26634729

RESUMO

Understanding how intercalation materials change during electrochemical operation is paramount to optimizing their behaviour and function and in situ characterization methods allow us to observe these changes without sample destruction. Here we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave-assisted route which exhibits a larger electrochemical capacity (232 mAh g(-1)) compared with VO2 (B) prepared by a solvothermal route (197 mAh g(-1)). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation.

16.
Environ Sci Technol ; 49(3): 1400-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25568986

RESUMO

Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.


Assuntos
Euphorbia/metabolismo , Raízes de Plantas/metabolismo , Zinco/metabolismo , Disponibilidade Biológica , Rizosfera , Silicatos/metabolismo , Espectroscopia por Absorção de Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...