Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Braz J Biol ; 83: e242942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468508


Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.

Estresse Oxidativo , Timerosal , Animais , Peróxido de Hidrogênio/metabolismo , Rim , Masculino , Ratos , Superóxido Dismutase/metabolismo , Timerosal/metabolismo , Timerosal/toxicidade
Braz J Biol ; 83: e243438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468509


Cisplatin (CP) is a commonly used, powerful antineoplastic drug, having numerous side effects. Casticin (CAS) is considered as a free radical scavenger and a potent antioxidant. The present research was planned to assess the curative potential of CAS on CP persuaded renal injury in male albino rats. Twenty four male albino rats were distributed into four equal groups. Group-1 was considered as a control group. Animals of Group-2 were injected with 5mg/kg of CP intraperitoneally. Group-3 was co-treated with CAS (50mg/kg) orally and injection of CP (5mg/kg). Group-4 was treated with CAS (50mg/kg) orally throughout the experiment. CP administration substantially reduced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) content while increased thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) levels. Urea, urinary creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, albumin and creatinine clearance was significantly reduced in CP treated group. The results demonstrated that CP significantly increased the inflammation indicators including nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activity and histopathological damages. However, the administration of CAS displayed a palliative effect against CP-generated renal toxicity and recovered all parameters by bringing them to a normal level. These results revealed that the CAS is an effective compound having the curative potential to counter the CP-induced renal damage.

Cisplatino , Peróxido de Hidrogênio , Animais , Antioxidantes , Cisplatino/toxicidade , Flavonoides , Masculino , Estresse Oxidativo , Ratos , Superóxido Dismutase/metabolismo
Folia Biol (Praha) ; 66(3): 91-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069188


The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.

Candida albicans/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Acetiltransferases/deficiência , Acetiltransferases/genética , Acetiltransferases/fisiologia , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Cálcio/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Cátions/farmacologia , Adesão Celular , Ciclo Celular , Parede Celular/efeitos dos fármacos , Quitinases/farmacologia , Dano ao DNA , Proteínas Fúngicas/genética , Deleção de Genes , Glucana Endo-1,3-beta-D-Glucosidase/farmacologia , Hifas/crescimento & desenvolvimento , Isocitrato Desidrogenase/deficiência , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Fases de Leitura Aberta , Reprodução Assexuada , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Virulência/genética
Hum Exp Toxicol ; 39(11): 1565-1581, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32573270


Nickel nanoparticles (Ni-NPs) have been widely used in various industries related to electronics, ceramics, textiles, and nanomedicine. Ambient and occupational exposure to Ni-NPs may bring about potential detrimental effects on animals and humans. Thus, there is a growing effort to identify compounds that can ameliorate NPs-associated pathophysiologies. The present study examined Cinnamomum cassia (C. cassia) bark extracts (CMBE) for its ameliorative activity against Ni-NPs-induced pathophysiological and histopathological alterations in male Sprague Dawley rats. The biochemical analyses revealed that dosing rats with Ni-NPs at 10 mg/kg/body weight (b.w.) significantly altered the normal structural and biochemical adaptations in the liver and kidney. Conversely, supplementations with CMBE at different doses (225, 200, and 175 mg/kg/b.w. of rat) ameliorated the altered blood biochemistry and reduced the biomarkers of liver and kidney function considerably (p < 0.05) in a dose-dependent manner. However, the best results were at 225 mg/kg/b.w. of rat. The study provided preliminary information about the protective effect of C. cassia against Ni-NPs indicated liver and kidney damages. Future investigations are needed to explore C. cassia mechanism of action and isolation of single constituents of C. cassia to assess their pharmaceutical importance accordingly.

Cinnamomum aromaticum , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Catalase/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Rim/patologia , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Fitoterapia , Casca de Planta , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley
Acta Virol ; 62(1): 3-15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29521098


Recently, medicinal plants are achieving great interest because of their use in ethno medicine treatment of different common diseases and also other medicinal assertions are now reinforced by comprehensive scientific evidence. Almost 82 research articles and abstracts published, so far, were screened for evaluating antiviral efficiency of various plant samples and 23 different plants were found to be traditionally used against Newcastle disease (ND). ND is a most transmissible viral disease of avian species caused by virulent strain of Avula virus from the Paramyxoviridae family. The first epidemic of ND was perceived in Java, Indonesia and England in year 1926. ND causes great economic loses to the commercial poultry farmers around the world. Medicinal plants are traditionally used in the control of viral or other diseases and infections. Plants have been found useful in treating many microbial diseases in man and animals caused by bacteria and viruses. The ability to synthesize compounds retaining antiviral potential by secondary metabolism makes plants a vital source of pharmaceutical and therapeutic products, which can reduce chemotherapeutic load in birds. Current studies signify that the natural products posses a rich potential source of new antiviral compounds. Further ethnobotanical studies and laboratory investigations are established to identify species having potential to improve ND control.

Galinhas , Doença de Newcastle/tratamento farmacológico , Vírus da Doença de Newcastle/patogenicidade , Fitoterapia/veterinária , Plantas Medicinais , Animais