Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Chemistry ; 26(15): 3390-3403, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31943407


The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complex of UIV with H2 O, OH- , and F- as axial ligands was studied by using UV/Vis spectrophotometry, ESI-MS, NMR spectroscopy, X-ray crystallography, and electrochemistry. The UIV -DOTA complex with either water or fluoride as axial ligands was found to be inert to oxidation by molecular oxygen, whereas the complex with hydroxide as an axial ligand slowly hydrolyzed and was oxidized by dioxygen to a diuranate precipitate. The combined data set acquired shows that, although axial substitution of fluoride and hydroxide ligands instead of water does not seem to significantly change the aqueous DOTA complex structure, it has an important effect on the electronic configuration of the complex. The UIV /UIII redox couple was found to be quasi-reversible for the complex with both axially bonded H2 O and hydroxide, but irreversible for the complex with axially bonded fluoride. Intriguingly, binding of the axial fluoride renders the irreversible one-electron UV /UIV oxidation of the [UIV (DOTA)(H2 O)] complex quasi-reversible, which suggests the formation of the short-lived pentavalent form of the complex, an aqueous non-uranyl chelated UV cation.

Inorg Chem ; 56(20): 12248-12259, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28968074


The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am3+ and Pu3+) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H2O)]-, where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

Nat Chem ; 9(9): 843-849, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28837177


Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin-a mammalian metal transporter-in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

Inorg Chem ; 55(22): 11930-11936, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27802058


Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log ß110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.

Quelantes/química , Complexos de Coordenação/química , Proteínas/química , Radioterapia/métodos , Tório/química , Zircônio/química , Animais , Complexos de Coordenação/farmacocinética , Feminino , Ligantes , Camundongos , Modelos Químicos , Distribuição Tecidual