Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Neurology ; 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541013

RESUMO

OBJECTIVE: To better characterize adult myotubularin 1 (MTM1)-related myopathy carriers and recommend a phenotypic classification. METHODS: This cohort study was performed at the NIH Clinical Center. Participants were required to carry a confirmed MTM1 mutation and were recruited via the Congenital Muscle Disease International Registry (n = 8), a traveling local clinic of the Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH and Cure CMD (n = 1), and direct physician referral (n = 1). Neuromuscular examinations, muscle MRI, dynamic breathing MRI, cardiac MRI, pulmonary function tests (PFTs), physical therapy assessments including the Motor Function Measure 32 (MFM-32) scale, and X chromosome inactivation (XCI) studies were performed. RESULTS: Phenotypic categories were proposed based on ambulatory status and muscle weakness. Carriers were categorized as severe (nonambulatory; n = 1), moderate (minimal independent ambulation/assisted ambulation; n = 3), mild (independent ambulation but with evidence of muscle weakness; n = 4), and nonmanifesting (no evidence of muscle weakness; n = 2). Carriers with more severe muscle weakness exhibited greater degrees of respiratory insufficiency and abnormal signal on muscle imaging. Skeletal asymmetries were evident in both manifesting and nonmanifesting carriers. Skewed XCI did not explain phenotypic severity. CONCLUSION: This work illustrates the phenotypic range of MTM1-related myopathy carriers in adulthood and recommends a phenotypic classification. This classification, defined by ambulatory status and muscle weakness, is supported by muscle MRI, PFT, and MFM-32 scale composite score findings, which may serve as markers of disease progression and outcome measures in future gene therapy or other clinical trials.

2.
Ann Clin Transl Neurol ; 6(8): 1395-1406, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402629

RESUMO

OBJECTIVE: To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS: Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS: Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION: Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.

3.
Eur J Hum Genet ; 27(10): 1611-1618, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31278393

RESUMO

The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each. Seven probands were identically heterozygous for a recurrent substitution, p.(Val837Met), in TRPM3's S4-S5 linker region, a conserved domain proposed to undergo conformational change during gated channel opening. The eighth individual was heterozygous for a proline substitution, p.(Pro937Gln), at the boundary between TRPM3's flexible pore-forming loop and an adjacent alpha-helix. General-population truncating variants and microdeletions occur throughout TRPM3, suggesting a pathomechanism other than simple haploinsufficiency. We conclude that de novo variants in TRPM3 are a cause of intellectual disability and epilepsy.

4.
Genet Med ; 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31316168

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
EBioMedicine ; 45: 379-392, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31231018

RESUMO

BACKGROUND: Peripheral neuropathies are often caused by disruption of genes responsible for myelination or axonal transport. In particular, impairment in mitochondrial fission and fusion are known causes of peripheral neuropathies. However, the causal mechanisms for peripheral neuropathy gene mutations are not always known. While loss of function mutations in MYH14 typically cause non-syndromic hearing loss, the recently described R941L mutation in MYH14, encoding the non-muscle myosin protein isoform NMIIC, leads to a complex clinical presentation with an unexplained peripheral neuropathy phenotype. METHODS: Confocal microscopy was used to examine mitochondrial dynamics in MYH14 patient fibroblast cells, as well as U2OS and M17 cells overexpressing NMIIC. The consequence of the R941L mutation on myosin activity was modeled in C. elegans. FINDINGS: We describe the third family carrying the R941L mutation in MYH14, and demonstrate that the R941L mutation impairs non-muscle myosin protein function. To better understand the molecular basis of the peripheral neuropathy phenotype associated with the R941L mutation, which has been hindered by the fact that NMIIC is largely uncharacterized, we have established a previously unrecognized biological role for NMIIC in mediating mitochondrial fission in human cells. Notably, the R941L mutation acts in a dominant-negative fashion to inhibit mitochondrial fission, especially in the cell periphery. In addition, we observed alterations to the organization of the mitochondrial genome. INTERPRETATION: As impairments in mitochondrial fission cause peripheral neuropathy, this insight into the function of NMIIC likely explains the peripheral neuropathy phenotype associated with the R941L mutation. FUND: This study was supported by the Alberta Children's Hospital Research Institute, the Canadian Institutes of Health Research and the Care4Rare Canada Consortium.

6.
Genet Med ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31239560

RESUMO

PURPOSE: Exome sequencing (ES) can rapidly identify disease-causing variants responsible for rare, single-gene diseases, and potentially reduce the duration of the diagnostic odyssey. Our study examines how parents and families value ES. METHODS: We developed a discrete choice experiment (DCE) survey that was administered to parents of children with rare diseases. The DCE included 14 choice tasks with 6 attributes and 3 alternatives. A valuation-space model was used to estimate willingness to pay, willingness to wait for test results, and minimum acceptable chance of a diagnosis for changes in each attribute. RESULTS: There were n = 319 respondents of whom 89% reported their child had genetic testing, and 66% reported their child had a diagnosis. Twenty-six percent reported that their child had been offered ES. Parents were willing to pay CAD$6590 (US$4943), wait 5.2 years to obtain diagnostic test results, and accept a reduction of 3.1% in the chance of a diagnosis for ES compared with operative procedures. CONCLUSION: Timely access to ES could reduce the diagnostic odyssey and associated costs. Before ES is incorporated routinely into care for patients with rare diseases in Canada and more broadly, there must be a clear understanding of its value to patients and families.

8.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858161

RESUMO

Exome sequencing of two sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene, encoding the phosphatidylserine decarboxylase enzyme that converts phosphatidylserine to phosphatidylethanolamine (PE) in the inner mitochondrial membrane (IMM). Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. Meanwhile, as evidence for mitochondrial dysfunction, patient fibroblasts exhibited more fragmented mitochondrial networks, enlarged lysosomes, decreased maximal oxygen consumption rates, and increased sensitivity to 2-deoxyglucose. Moreover, treatment with lyso-PE, which can replenish the mitochondrial pool of PE, and genetic complementation restored mitochondrial and lysosome morphology in patient fibroblasts. Functional characterization of the PISD variants demonstrates that the maternal variant causes an alternative splice product. Meanwhile, the paternal variant impairs autocatalytic self-processing of the PISD protein required for its activity. Finally, evidence for impaired activity of mitochondrial IMM proteases suggests an explanation as to why the phenotypes of these PISD patients resemble recently described "mitochondrial chaperonopathies." Collectively, these findings demonstrate that PISD is a novel mitochondrial disease gene.

9.
Cell ; 177(1): 32-37, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901545

RESUMO

The introduction of exome sequencing in the clinic has sparked tremendous optimism for the future of rare disease diagnosis, and there is exciting opportunity to further leverage these advances. To provide diagnostic clarity to all of these patients, however, there is a critical need for the field to develop and implement strategies to understand the mechanisms underlying all rare diseases and translate these to clinical care.

10.
Am J Med Genet A ; 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724471

RESUMO

The 39th Annual David W. Smith workshop on Malformations and Morphogenesis was held from August 24th-29th 2018 at the Banff Centre for Arts and Creativity, Banff, Alberta, Canada. The Workshop, which honors the legacy of David W. Smith, brought together clinicians and researchers from around the world interested in congenital malformations and their underlying mechanisms of morphogenesis in this addition to this year's five themes: phenotypes and phenotyping of known, novel and emerging syndromes; treatment; epigenetics and chromatin disorders; placenta; and, gene-environment interaction. This Conference Report includes the abstracts presented at the 2018 Workshop.

12.
Eur J Hum Genet ; 27(4): 582-593, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30622326

RESUMO

The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.

13.
Eur J Hum Genet ; 27(5): 738-746, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30679813

RESUMO

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.

14.
Am J Med Genet C Semin Med Genet ; 178(4): 387-397, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30580484

RESUMO

Dubowitz syndrome was described in 1965 as a recognizable syndrome characterized by microcephaly, short stature, eczema, mild developmental delays, and an increased risk of malignancy. Since its original description, there have been over 200 reported cases though no single gene has been identified to explain a significant proportion of affected individuals. Since the last definitive review of Dubowitz syndrome in 1996, there have been 63 individuals with a clinical, or suspected, diagnosis of Dubowitz syndrome reported in 51 publications. These individuals show a markedly wide spectrum with respect to growth, facial gestalt, psychomotor development, and risk of malignancy; genetic causes were identified in 33% (21/63). Seven individuals had deleterious copy number variants, in particular deletions at 14q32 and 17q24 were reported and showed overlap with the Dubowitz phenotype. Several cases were shown to have single gene disorders that included de novo or biallelic pathogenic variants in several genes including NSUN2 and LIG4 frequently identified by next-generation sequencing methods. It appears that the inability to identify a single gene responsible for Dubowitz syndrome reflects its extreme clinical and genetic heterogeneity. However, detailed phenotyping combined with careful grouping of subsets of unsolved cases and in conjunction with data-sharing will identify novel disease genes responsible for additional cases. In the interim, for those clinically diagnosed with a Dubowitz phenotype, we recommend assessment by a Medical Geneticist, a microarray and, if available, clinical or research based genome-wide sequencing. Management suggestions, including decisions regarding malignancy screening in select patients will be discussed.

15.
Am J Med Genet C Semin Med Genet ; 178(4): 382-386, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30580485

RESUMO

Due to the efforts of the clinical and scientific communities and boosted by recent advances in genetic technologies, we now understand the molecular mechanisms underlying most of the frequent and recognizable human malformation syndromes. However, some well-established human malformation syndromes remain without a molecular diagnosis despite intensive investigation. This issue of Seminars mines the phenotypic entries in OMIM and estimates that of the documented 2,034 unsolved entries likely to represent a rare genetic disease, only 160 are well-established and possibly amenable to investigation. This issue also reviews well-characterized and extensively investigated human malformation syndromes and associations that remain unsolved, including the following: Dubowitz syndrome (MIM 223370%), Hallermann-Streiff syndrome (MIM 234100%), PHACE syndrome (MIM 606519), Oculocerebrocutaneous syndrome (MIM 164180), Aicardi syndrome (MIM 304050%), Gomez-Lopez-Hernandez syndrome and Rhombencephalosynapsis (MIM 601853%), VACTERL (MIM 192350%), and Nablus syndrome (MIM #608156). Possible explanations for their intractability to molecular diagnosis are explored, including genetic and phenotypic heterogeneity, mosaicism, epigenetics, gene-environment interactions, and other non-Mendelian contributions. Finally, this issue of Seminars presents a path forward for these unsolved rare conditions and suggests a renewed focus on solving amendable OMIM disorders. It is clear that the way forward will require new technologies, global cooperation, and data sharing; these will also be necessary to help reach the vision of the International Rare Diseases Research Consortium (IRDiRC), that is to enable all people living with a rare disease to receive an accurate diagnosis, care and available therapy within 1 year of coming to medical attention.

17.
Nat Commun ; 9(1): 4885, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459321

RESUMO

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.

18.
Nat Commun ; 9(1): 4619, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397230

RESUMO

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.

19.
J Obstet Gynaecol Can ; 40(11): 1417-1423, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30473118

RESUMO

OBJECTIVE: Most prenatally identified congenital heart defects (CHDs) are the sole structural anomaly detected; however, there is a subgroup of cases where the specific genetic cause will impact prognosis, including chromosome abnormalities and single-gene causes. Next-generation sequencing of all the protein coding regions in the genome or targeted to genes involved in cardiac development is currently possible in the prenatal period, but there are minimal data on the clinical utility of such an approach. This study assessed the outcome of a CHD gene panel that included single-gene causes of syndromic and non-syndromic CHDs. METHOD: Sixteen cases with a fetal CHD identified on prenatal ultrasound were studied using a 108 CHD gene panel. DNA was extracted from cultured amniocytes. RESULTS: There was no diagnostic pathogenic variant identified in these cases. There was an average of 2.9 reportable variants identified per case and the majority of them were variants of uncertain significance. CONCLUSION: Next-generation sequencing has the potential for increased genetic diagnosis for fetal anomalies. However, the large number of variants and the absence of an examinable patient make the interpretation of these variants challenging.

20.
Am J Hum Genet ; 103(5): 786-793, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343942

RESUMO

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA