Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 109(3): 686-9, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22219370


New important applications of copper metal, e.g., in the areas of hydrogen production, fuel cell operation, and spent nuclear fuel disposal, require accurate knowledge of the physical and chemical properties of stable and metastable copper compounds. Among the copper(I) compounds with oxygen and hydrogen, cuprous oxide Cu(2)O is the only one stable and the best studied. Other such compounds are less known (CuH) or totally unknown (CuOH) due to their instability relative to the oxide. Here we combine quantum-mechanical calculations with experimental studies to search for possible compounds of monovalent copper. Cuprous hydride (CuH) and cuprous hydroxide (CuOH) are proved to exist in solid form. We establish the chemical and physical properties of these compounds, thereby filling the existing gaps in our understanding of hydrogen- and oxygen-related phenomena in Cu metal.

Proc Natl Acad Sci U S A ; 108(23): 9342-5, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21597000


Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural γ - α transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the γ → α transition, and compared it with theoretical results using ab initio lattice dynamics. Several phonon branches show strong changes in the dispersion shape, indicating large modifications in the interactions between phonons and conduction electrons. This is reflected as well by the lattice Grüneisen parameters, particularly around the X point. We derive a vibrational entropy change ΔS(γ-α)(vib) ≈ (0.33+/-0.03)k(B), illustrating the importance of the lattice contribution to the transition. Additionally, we compare first principles calculations with the experiments to shed light on the mechanism underlying the isostructural volume collapse in cerium under pressure.

Cério/química , Fenômenos Químicos , Modelos Químicos , Algoritmos , Cinética , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
Phys Rev Lett ; 105(23): 236403, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231488


The heat capacity of MnSi at B = 0 and B = 4 T was measured in the temperature range 2.5-100 K. To analyze the data, calculations of the phonon spectrum and phonon density of states in MnSi were performed. The calculated phonon frequencies were confirmed by means of inelastic neutron scattering. The analysis of the data suggests the existence of negative contributions to the heat capacity and entropy of MnSi at T > T(c) that may imply a specific ordering in the spin subsystem in the paramagnetic phase of MnSi.

Proc Natl Acad Sci U S A ; 104(22): 9168-71, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17483486


The core extends from the depth of 2,900 km to the center of the Earth and is composed mainly of an iron-rich alloy with nickel, with 10% of the mass comprised of lighter elements like hydrogen, but the exact composition is uncertain. We present a quantum mechanical first-principles study of the dynamical stability of FeH phases and their phonon densities of states at high pressure. Our free-energy calculations reveal a phonon-driven stabilization of dhcp FeH at low pressures, thus resolving the present contradiction between experimental observations and theoretical predictions. Calculations reveal a complex phase diagram for FeH under pressure with a dhcp --> hcp --> fcc sequence of structural transitions.