Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649233

RESUMO

Most animals harbor a gut microbiota that consists of potentially pathogenic, commensal, and mutualistic microorganisms. Dual oxidase (Duox) is a well described enzyme involved in gut mucosal immunity by the production of reactive oxygen species (ROS) that antagonizes pathogenic bacteria and maintains gut homeostasis in insects. However, despite its nonspecific harmful activity on microorganisms, little is known about the role of Duox in the maintenance of mutualistic gut symbionts. Here we show that, in the bean bug Riptortus pedestris, Duox-dependent ROS did not directly contribute to epithelial immunity in the midgut in response to its mutualistic gut symbiont, Burkholderia insecticola Instead, we found that the expression of Duox is tracheae-specific and its down-regulation by RNAi results in the loss of dityrosine cross-links in the tracheal protein matrix and a collapse of the respiratory system. We further demonstrated that the establishment of symbiosis is a strong oxygen sink triggering the formation of an extensive network of tracheae enveloping the midgut symbiotic organ as well as other organs, and that tracheal breakdown by Duox RNAi provokes a disruption of the gut symbiosis. Down-regulation of the hypoxia-responsive transcription factor Sima or the regulators of tracheae formation Trachealess and Branchless produces similar phenotypes. Thus, in addition to known roles in immunity and in the formation of dityrosine networks in diverse extracellular matrices, Duox is also a crucial enzyme for tracheal integrity, which is crucial to sustain mutualistic symbionts and gut homeostasis. We expect that this is a conserved function in insects.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33295856

RESUMO

Three bacterial strains, designated Red330T, Red736T and Red745T, were isolated from forest and paddy soils in Japan. Strains Red330T, Red736T and Red745T are flagella-harbouring and strictly anaerobic bacteria forming red colonies. A 16S rRNA gene sequence-based phylogenetic tree showed that all three strains were located in a cluster, including the type strains of Geomonas species, which were recently separated from the genus Geobacter within the family Geobacteraceae. Similarities of the 16S rRNA gene sequences among the three strains and Geomonas oryzae S43T, the type species of the genus Geomonas, were 96.3-98.5 %. The genome-related indexes, average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity, among the three strains and G. oryzae S43T were 74.7-86.8 %, 21.2-33.3 % and 70.4-89.8 %, respectively, which were lower than the species delineation thresholds. Regarding the phylogenetic relationships based on genome sequences, the three strains clustered with the type strains of Geomonas species, which were independent from the type strains of Geobacter species. The distinguishableness of the three isolated strains was supported by physiological and chemotaxonomic properties, with the profile of availability of electron donors and cellular fatty acids composition being particularly different among them. Based on genetic, phylogenetic and phenotypic properties, the three isolates represent three novel independent species in the genus Geomonas, for which the names Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov. are proposed. The type strains are Red330T (=NBRC 114028T=MCCC 1K03949T), Red736T (=NBRC 114029T=MCCC 1K03950T) and Red745T (=NBRC 114030T=MCCC 1K03951T), respectively.

3.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32532868

RESUMO

Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium.IMPORTANCE Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.


Assuntos
Myxococcales/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Microbiologia do Solo , Myxococcales/classificação , Myxococcales/isolamento & purificação , Fixação de Nitrogênio/genética
4.
Int J Syst Evol Microbiol ; 70(7): 4119-4129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32539909

RESUMO

A marine strain, designated KK4T, was isolated from the surface of a starfish, Patiria pectinifera, which was collected from seawater off the coast of Hokkaido, Japan. Strain KK4T is a Gram-stain-negative, non-spore-forming, rod-shaped, aerobic bacterium that forms yellow-pigmented colonies. A phylogenetic relationship analysis, based on 16S rRNA gene sequences, revealed that strain KK4T was closely related to Ulvibacter marinus IMCC12008T, Ulvibacter antarcticus IMCC3101T and Ulvibacter litoralis KMM 3912T, with similarities of 96.9, 95.8 and 95.6 %, respectively, but low sequence similarities (<94 %) among other genera in the family Flavobacteriaceae. Genomic similarities between strain KK4T and the three Ulvibacter type strains based on average nucleotide identity and digital DNA-DNA hybridization values were lower than the species delineation thresholds. Moreover, phylogenetic tree based on genome sequences showed that strain KK4T was clustered with U. marinus IMCC12008T and formed a branch independent from the cluster including type species of the genera Ulvibacter, Marixanthomonas, Marinirhabdus, Aureitalea and Aequorivita. Amino acid identity values between strain KK4T/U. marinus IMCC12008T and the neighbour type species/strains were 61.9-68.2% and 61.5-67.4 %, which were lower than the genus delineation threshold, implying the novel genus status of strain KK4T. Strain KK4T growth occurred at pH 6.0-9.0, 4-30 °C and in NaCl concentrations of 0.5-5.0 %, and optimally at pH 7.0, 25 °C and 3.0 %, respectively. Unlike Ulvibacter strains, strain KK4T could assimilate glucose, mannose, galactose and acetate. The major quinone and fatty acids were menaquinone-6 and iso-C15 : 0 (27.5 %), iso-C15 : 1 G (22.5 %) and iso-C17 : 0 3-OH (12.8 %), respectively. Based on genetic, phylogenetic and phenotypic properties, strain KK4T represents a novel species of the genus Patiriisocius, for which the name Patiriisocius marinistellae gen. nov., sp. nov. is proposed. The type strain is KK4T (=JCM 33344T=KCTC 72225T). In addition, based on the current data, Ulvibacter marinus should be reclassified as Patiriisocius marinus comb. nov.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Estrelas-do-Mar/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Japão , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Microorganisms ; 8(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349406

RESUMO

Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA-DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.

6.
Proc Natl Acad Sci U S A ; 116(45): 22673-22682, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636183

RESUMO

Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Simbiose , Animais , Modelos Biológicos
7.
Front Microbiol ; 10: 2201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608033

RESUMO

In paddy soil, bacteria from the family Geobacteraceae have been shown to strongly contribute to the biogeochemical cycle. However, no Geobacteraceae species with validly published names have been isolated from paddy soil. In this study, we isolated and characterized four novel ferric reducing bacteria in the family Geobacteraceae from the paddy soils of three different fields in Japan. The four strains, S43T, Red53T, S62T, and Red111T, were Gram-stain negative, strictly anaerobic, chemoheterotrophic, and motile with peritrichous flagella. Phylogenetic studies based on 16S rRNA gene sequences, five concatenated housekeeping genes (fusA, rpoB, recA, nifD, and gyrB) and 92 concatenated core genes revealed that the four strains belong to the family Geobacteraceae and are most closely related to Geobacter bemidjiensis BemT (97.4-98.2%, 16S rRNA gene sequence similarities) and Geobacter bremensis Dfr1T (97.1-98.0%). Genomic analysis with average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) calculations clearly distinguished the four isolated strains from other species of the family Geobacteraceae and indicated that strains S43T, Red53T, S62T, and Red111T represent independent species, with values below the thresholds for species delineation. Chemotaxonomic characteristics, including major fatty acid and whole cell protein profiles, showed differences among the isolates and their closest relatives, which were consistent with the results of DNA fingerprints and physiological characterization. Additionally, each of the four isolates shared a low 16S rRNA gene sequence similarity (92.4%) and average amino acid identity (AAI) with the type strain of the type species Geobacter metallireducens. Overall, strains S43T, Red53T, S62T, and Red111T represent four novel species, which we propose to classify in a novel genus of the family Geobacteraceae, and the names Geomonas oryzae gen. nov., sp. nov. (type strain S43T), Geomonas edaphica sp. nov. (type strain Red53T), Geomonas ferrireducens sp. nov. (type strain S62T), and Geomonas terrae sp. nov. (type strain Red111T) are proposed. Based on phylogenetic and genomic analyses, we also propose the reclassification of Geobacter bremensis as Geomonas bremensis comb. nov., Geobacter pelophilus as Geomonas pelophila comb. nov., and Geobacter bemidjiensis as Geomonas bemidjiensis comb. nov.

8.
Microbes Environ ; 34(2): 219-222, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31167992

RESUMO

Insects of the heteropteran superfamilies Coreoidea and Lygaeoidea are consistently associated with symbionts of a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group. The symbiosis is maintained by the environmental transmission of symbionts. We investigated European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). High nymphal mortality in reared aposymbiotic insects suggested an obligate host-symbiont association in this species. Molecular phylogenetic analyses based on 16S rRNA gene sequences revealed that all 173 individuals investigated were colonized by Burkholderia, which were further assigned to different subgroups of the SBE in a region-dependent pattern.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Simbiose , Animais , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Europa (Continente) , Feminino , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/microbiologia , Heterópteros/anatomia & histologia , Japão , Masculino , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Microbiol Resour Announc ; 8(19)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072894

RESUMO

Agarivorans sp. strain Toyoura001 is a bacterium isolated from the gut of a wild abalone, Haliotis discus hannai Here, we report the draft genome sequence of strain Toyoura001, which consists of 60 contigs comprising 4.67 Mb and 4,257 protein-coding genes.

10.
Nat Prod Rep ; 35(5): 434-454, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29644346

RESUMO

Covering: up to 2018 Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds. Here, we review recent advances in our understanding on the symbiont-mediated degradation of natural and artificial toxins, with a special emphasis on their underlying genetic basis, focus on the importance of environmental microbiota as a resource of toxin-degrading microorganisms, and discuss the ecological and evolutionary significance of these symbiotic associations.


Assuntos
Insetos/efeitos dos fármacos , Insetos/microbiologia , Praguicidas/farmacocinética , Simbiose/fisiologia , Toxinas Biológicas/farmacocinética , Animais , Evolução Biológica , Enzimas/genética , Enzimas/metabolismo , Inativação Metabólica/genética , Isotiocianatos/farmacocinética , Oxalatos/farmacocinética , Fenóis/farmacocinética , Simbiose/efeitos dos fármacos , Terpenos/farmacocinética
11.
ISME J ; 12(3): 909-920, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343832

RESUMO

Insecticide resistance is a serious concern in modern agriculture, and an understanding of the underlying evolutionary processes is pivotal to prevent the problem. The bean bug Riptortus pedestris, a notorious pest of leguminous crops, acquires a specific Burkholderia symbiont from the environment every generation, and harbors the symbiont in the midgut crypts. The symbiont's natural role is to promote insect development but the insect host can also obtain resistance against the insecticide fenitrothion (MEP) by acquiring MEP-degrading Burkholderia from the environment. To understand the developing process of the symbiont-mediated MEP resistance in response to the application of the insecticide, we investigated here in parallel the soil bacterial dynamics and the infected gut symbionts under different MEP-spraying conditions by culture-dependent and culture-independent analyses, in conjunction with stinkbug rearing experiments. We demonstrate that MEP application did not affect the total bacterial soil population but significantly decreased its diversity while it dramatically increased the proportion of MEP-degrading bacteria, mostly Burkholderia. Moreover, we found that the infection of stinkbug hosts with MEP-degrading Burkholderia is highly specific and efficient, and is established after only a few times of insecticide spraying at least in a field soil with spraying history, suggesting that insecticide resistance could evolve in a pest bug population more quickly than was thought before.


Assuntos
Burkholderia/efeitos dos fármacos , Sistema Digestório/microbiologia , Fenitrotion/farmacologia , Heterópteros/microbiologia , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Animais , Evolução Biológica , Burkholderia/genética , Burkholderia/fisiologia , DNA Bacteriano/análise , Saccharum , Análise de Sequência de DNA , Simbiose/efeitos dos fármacos , Simbiose/fisiologia
12.
Microbes Environ ; 32(2): 180-183, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28442658

RESUMO

Waterlogged paddy soils possess anoxic zones in which microbes actively induce reductive nitrogen transformation (RNT). In the present study, a shotgun RNA sequencing analysis (metatranscriptomics) of paddy soil samples revealed that most RNT gene transcripts in paddy soils were derived from Deltaproteobacteria, particularly the genera Anaeromyxobacter and Geobacter. Despite the frequent detection of the rRNA of these microbes in paddy soils, their RNT-associated genes have rarely been identified in previous PCR-based studies. This metatranscriptomic analysis provides novel insights into the diversity of RNT microbes present in paddy soils and the ecological function of Deltaproteobacteria predominating in these soils.


Assuntos
Deltaproteobacteria/metabolismo , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Microbiologia do Solo , Oryza , Solo/química , Transcriptoma
13.
Sci Rep ; 7: 43993, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272447

RESUMO

Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM's modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Disbiose , Casca de Ovo/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colite/veterinária , Sulfato de Dextrana/toxicidade , Metabolismo Energético/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Humanos , Interleucina-6/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Transcriptoma/efeitos dos fármacos
14.
Microbes Environ ; 30(4): 321-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657305

RESUMO

A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.


Assuntos
Burkholderia/isolamento & purificação , Burkholderia/fisiologia , Heterópteros/microbiologia , Simbiose , Animais , Clonagem Molecular , Trato Gastrointestinal/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
15.
Front Microbiol ; 6: 426, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042094

RESUMO

Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM) amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25∘C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration significantly increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas sp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. These oxidizers also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III) reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2-96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine sediments.

16.
Front Microbiol ; 6: 386, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999927

RESUMO

Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides.

17.
Environ Sci Technol ; 49(13): 7684-91, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020820

RESUMO

Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput Illumina sequencing of 16S rRNA genes was applied to monitor the shift of the microorganisms in an anoxic contaminated soil after Se(VI) and acetate amendment. An autoclaved soil with both chemicals and a live soil with acetate alone were used as controls. Preliminary chemical analysis clearly showed the occurrence of biological selenate reduction coupled with acetate oxidation. Principal coordinate analysis and diversity indices of Illumina-derived sequence data showed dynamic succession and diversification of the microbial community in response to selenate reduction. High-resolution phylogenetic analysis revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus Dechloromonas increased remarkably from 0.2% to 36% as a result of Se(VI) addition. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae families had significant increases as well. This study demonstrated that these microorganisms are concertedly involved in selenate reduction of the employed contaminated soil under anoxic conditions.


Assuntos
Microbiota , Ácido Selênico/metabolismo , Microbiologia do Solo , Solo/química , Acetatos/metabolismo , Anaerobiose , Biodegradação Ambiental , Comamonadaceae/metabolismo , Microbiota/genética , Oxirredução , Análise de Componente Principal , RNA Ribossômico 16S/genética , Rhodocyclaceae/metabolismo , Análise de Sequência de DNA , Fatores de Tempo
18.
Microbes Environ ; 30(1): 29-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25736865

RESUMO

The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields.


Assuntos
Burkholderia/classificação , Burkholderia/metabolismo , Heterópteros/microbiologia , Inseticidas/metabolismo , Simbiose , Animais , Biotransformação , Burkholderia/genética , Burkholderia/fisiologia , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Ribossômico/química , DNA Ribossômico/genética , Fenitrotion/metabolismo , Ilhas , Japão , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
19.
Environ Microbiol Rep ; 7(2): 282-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25403652

RESUMO

Stable isotope probing (SIP) of rRNA directly identifies microorganisms assimilating an isotopically labelled substrate. High-throughput DNA sequencing is available for label screening at high resolution and high sensitivity, yet its effectiveness and validity remain to be clarified. Here, we investigated whether the detection sensitivity of rRNA-SIP could be improved by using Illumina sequencing in place of terminal restriction fragment length polymorphism (T-RFLP) analysis. A dilution series of (13) C-labelled RNA from Escherichia coli (1-0.0001%) and unlabelled RNA from Bacillus subtilis was density separated and fractionated. Illumina sequencing of isopycnic centrifugation gradients was able to detect (13) C-labelled RNA in the heaviest fraction with a buoyant density of 1.798 g ml(-1) even at the mixing ratio of 0.001%, whereas the detection ability of T-RFLP was not lower than 0.5%. Quantitative reverse transcription polymerase chain reaction of the density-separated RNAs showed that (13) C-labelled RNAs at mixing ratios of 0.05-0.001% had definitely accumulated in the heaviest fraction. Consequently, high-throughput sequencing provided up to 500-fold higher sensitivity for screening of (13) C-labelled RNA than T-RFLP. Ultra-high-sensitivity rRNA-SIP represents a clear advance towards a more complete understanding of microbial ecosystem function, including the ecophysiology of rare microorganisms in various natural environments.


Assuntos
Centrifugação Isopícnica , Classificação/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Marcação por Isótopo/métodos , RNA Ribossômico/análise , RNA Ribossômico/isolamento & purificação , Bacillus subtilis/genética , Escherichia coli/genética , Polimorfismo de Fragmento de Restrição , Sensibilidade e Especificidade
20.
Microbes Environ ; 29(4): 434-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410730

RESUMO

The diversity and abundance of Burkholderia species in sugarcane field soils were investigated by a 16S rRNA gene-based approach using genus-specific primers. A total of 365,721 sequences generated by the Illumina MiSeq platform were assigned to the genus Burkholderia. Nearly 58% of these sequences were placed in a previously defined cluster, including stinkbug symbionts. Quantitative PCR analysis revealed a consistent number of 16S rRNA gene copies for Burkholderia species (10(7) g(-1) soil) across the sampled fields. C/N, pH, and nitrate concentrations were important factors shaping the Burkholderia community structure; however, their impacts were not significant considering the overall genus size.


Assuntos
Biota , Burkholderia/classificação , Burkholderia/genética , Filogenia , Saccharum/crescimento & desenvolvimento , Microbiologia do Solo , Carbono/análise , Análise por Conglomerados , Primers do DNA/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitratos/análise , Nitrogênio/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...