Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
AAPS PharmSciTech ; 22(5): 193, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34184163


The human immunodeficiency virus (HIV) impacts up to 37 million people globally, of which 1.8 million are children. To date, there is no cure for HIV, although treatment options such as antiretroviral therapy (ART) are available. ART, which involves a patient taking a combination of antiretrovirals, is being used to treat HIV clinically. Despite the effectiveness of ART, there is currently no palatable pediatric formulation to treat HIV in children, which has hindered patient compliance and overall treatment efficacy. In addition, anti-HIV therapeutics are often poorly water-soluble, and hence have poor bioavailability. In the present study, we developed a pediatric-friendly formulation for anti-HIV therapeutics with improved dissolution characteristics of the therapeutic agents. Lopinavir (LPV) and ritonavir (RTV), available as FDA-approved fixed-dose combination products, were chosen as model ART drugs, and the formulation and processing parameters of spray-dried cyclodextrin (CD)-based LPV and RTV complexes were studied. Results showed that the spray-dried complexes exhibited enhanced dissolution profiles in comparison to pure drugs, particularly spray-dried ß-CD complexes, which showed the most favorable dissolution profiles. This current formulation with enhanced dissolution and taste-masking ability through the use of cyclodextrin has the potential to address the unmet need for the development of suitable pediatric formulations.

Fármacos Anti-HIV/análise , Fármacos Anti-HIV/síntese química , Ciclodextrinas/análise , Ciclodextrinas/síntese química , Desenvolvimento de Medicamentos/métodos , Secagem por Atomização , Fármacos Anti-HIV/uso terapêutico , Criança , Ciclodextrinas/uso terapêutico , Composição de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Pediatria/métodos , Difração de Raios X/métodos
AAPS J ; 23(4): 87, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145513


3D printing has emerged as an advanced manufacturing technology in the field of pharmaceutical sciences. Despite much focus on enteral applications, there has been a lack of research focused on potential benefits of 3D printing for parenteral applications such as wound dressings, biomedical devices, and regenerative medicines. 3D printing technologies, including fused deposition modeling, vat polymerization, and powder bed printing, allow for rapid prototyping of personalized medications, capable of producing dosage forms with flexible dimensions based on patient anatomy as well as dosage form properties such as porosity. Considerations such as printing properties and material selection play a key role in determining overall printability of the constructs. These parameters also impact drug release kinetics, and mechanical properties of final printed constructs, which play a role in modulating immune response upon insertion in the body. Despite challenges in sterilization of printed constructs, additional post-printing processing procedures, and lack of regulatory guidance, 3D printing will continue to evolve to meet the needs of developing effective, personalized medicines for parenteral applications.

Int J Pharm ; 583: 119360, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335080


Extruded 3D printing is emerging as an attractive fabrication technology in the field of personalized oral medicines. The objective of this study was to develop a tunable extruded 3D printing platform based on thermo-sensitive gelatin pastes to meet the needs of achieving different drug release characteristics with flexible dosing and design. The printability and mechanisms of extrusion and deposition of the gelatin pastes were systematically studied. Ibuprofen and diclofenac sodium were used as model drugs for immediate- and sustained-release formulations, respectively. Following the optimization of formulation and process parameters, ibuprofen immediate-release formulations with different designs, and reservoir-type diclofenac sodium sustained-release formulations were printed. Target drug release patterns were successfully obtained for both model drugs. Rheological studies revealed that additives such as microcrystalline cellulose and hydroxypropyl methylcellulose can act as both thickeners and proppants of gelatin matrix. Furthermore, computational fluid dynamics simulation was used to visualize the printing process, and quantitatively analyze the influence of material viscosity, inlet velocity and nozzle diameter on the pressure and velocity of extrusion flow field. The present study demonstrated the great potential of extruded 3D printing technology using the thermo-sensitive gelatin paste platform for personalized oral medicines.

Gelatina/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Celulose/química , Preparações de Ação Retardada/química , Diclofenaco/química , Excipientes/química , Glicerol/química , Hidrodinâmica , Derivados da Hipromelose/química , Ibuprofeno/química , Lactose/química , Manitol/química , Reologia , Viscosidade , Água/química
Pharmaceutics ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052257


Granules with superior fluidity and low moisture absorption are ideal for tableting and capsule filling. Melt granulation as a solvent-free technology has attracted increasing interest for the granulation of moisture-sensitive drugs. The objective of the present study was to develop a solvent-less and high throughput melt granulation method via the melt centrifugal atomization (MCA) technique. The granule formability of various drugs and excipients via MCA and their dissolution properties were studied. It was found that the yield, fluidity, and moisture resistance of the granules were affected by the drug and excipient types, operation temperature, and collector diameter. The drugs were in an amorphous state in pure drug granules, or were highly dispersed in excipients as solid dispersions. The granules produced via MCA showed an improved drug dissolution. The present study demonstrated that the solvent-free, one-step, and high-throughput MCA approach can be used to produce spherical granules with superior fluidity and immediate drug release characteristics for poorly water-soluble and moisture-sensitive therapeutics.