Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Filtros adicionais











Intervalo de ano
1.
Am J Hum Genet ; 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31587868

RESUMO

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.

2.
Genet Med ; 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31527676

RESUMO

PURPOSE: Pediatric cardiomyopathy is rare, has a broad differential diagnosis, results in high morbidity and mortality, and has suboptimal diagnostic yield using next-generation sequencing panels. Exome sequencing has reported diagnostic yields ranging from 30% to 57% for neonates in intensive care units. We aimed to characterize the clinical utility of exome sequencing in infantile heart failure. METHODS: Infants diagnosed with acute heart failure prior to 1 year old over a period of 34 months at a large tertiary children's hospital were recruited. Demographic and diagnostic information was obtained from medical records. Fifteen eligible patients were enrolled. RESULTS: Dilated cardiomyopathy was the predominant cardiac diagnosis, seen in 60% of patients. A molecular diagnosis was identified in 66.7% of patients (10/15). Of those diagnoses, 70% would not have been detected using multigene next-generation sequencing panels focused on cardiomyopathy or arrhythmia disease genes. Genetic testing changed medical decision-making in 53% of all cases and 80% of positive cases, and was especially beneficial when testing was expedited. CONCLUSION: Given the broad differential diagnosis and critical status of infants with heart failure, rapid exome sequencing provides timely diagnoses, changes medical management, and should be the first-tier molecular test.

3.
Am J Hum Genet ; 105(2): 403-412, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303265

RESUMO

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.

4.
Am J Med Genet A ; 179(7): 1126-1138, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31058441

RESUMO

CHOPS syndrome is a multisystem disorder caused by missense mutations in AFF4. Previously, we reported three individuals whose primary phenotype included cognitive impairment and coarse facies, heart defects, obesity, pulmonary involvement, and short stature. This syndrome overlaps phenotypically with Cornelia de Lange syndrome, but presents distinct differences including facial features, pulmonary involvement, and obesity. Here, we provide clinical descriptions of an additional eight individuals with CHOPS syndrome, as well as neurocognitive analysis of three individuals. All 11 individuals presented with features reminiscent of Cornelia de Lange syndrome such as synophrys, upturned nasal tip, arched eyebrows, and long eyelashes. All 11 individuals had short stature and obesity. Congenital heart disease and pulmonary involvement were common, and those were seen in about 70% of individuals with CHOPS syndrome. Skeletal abnormalities are also common, and those include abnormal shape of vertebral bodies, hypoplastic long bones, and low bone mineral density. Our observation indicates that obesity, pulmonary involvement, skeletal findings are the most notable features distinguishing CHOPS syndrome from Cornelia de Lange syndrome. In fact, two out of eight of our newly identified patients were found to have AFF4 mutations by targeted AFF4 mutational analysis rather than exome sequencing. These phenotypic findings establish CHOPS syndrome as a distinct, clinically recognizable disorder. Additionally, we report three novel missense mutations causative for CHOPS syndrome that lie within the highly conserved, 14 amino acid sequence of the ALF homology domain of the AFF4 gene, emphasizing the critical functional role of this region in human development.

5.
Am J Hum Genet ; 104(4): 596-610, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879640

RESUMO

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.

6.
Clin Chem ; 65(5): 653-663, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30770376

RESUMO

BACKGROUND: Congenital disorders of glycosylation (CDG) represent 1 of the largest groups of metabolic disorders with >130 subtypes identified to date. The majority of CDG subtypes are disorders of N-linked glycosylation, in which carbohydrate residues, namely, N-glycans, are posttranslationally linked to asparagine molecules in peptides. To improve the diagnostic capability for CDG, we developed and validated a plasma N-glycan assay using flow injection-electrospray ionization-quadrupole time-of-flight mass spectrometry. METHODS: After PNGase F digestion of plasma glycoproteins, N-glycans were linked to a quinolone using a transient amine group at the reducing end, isolated by a hydrophilic interaction chromatography column, and then identified by accurate mass and quantified using a stable isotope-labeled glycopeptide as the internal standard. RESULTS: This assay differed from other N-glycan profiling methods because it was free of any contamination from circulating free glycans and was semiquantitative. The low end of the detection range tested was at 63 nmol/L for disialo-biantennary N-glycan. The majority of N-glycans in normal plasma had <1% abundance. Abnormal N-glycan profiles from 19 patients with known diagnoses of 11 different CDG subtypes were generated, some of which had previously been reported to have normal N-linked protein glycosylation by carbohydrate-deficient transferrin analysis. CONCLUSIONS: The clinical specificity and sensitivity of N-glycan analysis was much improved with this method. Additional CDGs can be diagnosed that would be missed by carbohydrate-deficient transferrin analysis. The assay provides novel biomarkers with diagnostic and potentially therapeutic significance.

7.
Life Sci ; 221: 293-300, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797017

RESUMO

AIM: Cathepsin L (Ctsl) plays a pivotal role in lysosomal and autophagic proteolysis. Previous investigations revealed that partial hepatectomy (PH) decreases biosynthesis of cathepsins in liver, followed by suppression of lysosomal and autophagic proteolysis during liver regeneration. Conversely, it was reported that autophagy-deficiency suppressed liver regeneration. Thus, the purpose of this study is to determine if Ctsl deficiency affects liver regeneration after PH. METHODS: 70% of PH was performed in male Ctsl-deficient mice (Ctsl-/-) and wild-type littermates (Ctsl +/+) after PH. Mice were sacrificed and wet weight of the whole remaining liver was measured. Bromodeoxyuridine (BrdU)-immunostaining of liver sections was performed. Expression of cyclin D1, p62, LC-3, Nrf2, cleaved-Notch1, Hes1 was evaluated by western blot analysis. NQO1 mRNA expression was measured by realtime-PCR. RESULTS: After a 70% of PH, the liver mass was significantly restored within 5 days in Ctsl-/- mice compared to wild-type. Ctsl-deficiency enhanced the increases in both the rate of BrdU-positive cells and cyclin D1 expression after PH more than wild-type mice. On the other hand, Ctsl-deficiency upregulated p62, cleaved-Notch1 and Hes1 expression after PH. Moreover, the protein level of Nrf2 in the nucleus and mRNA expression of NQO1 in the liver after PH was also up-regulated in Ctsl-/- mice. CONCLUSIONS: These findings suggest that accumulation of p62 due to loss of Ctsl plays an important role in liver regeneration through activation of Nrf2-Notch1 signaling. Taken together, Ctsl might be a new therapeutic target on disorder of liver regeneration.


Assuntos
Catepsina L/deficiência , Regeneração Hepática/fisiologia , Animais , Autofagia , Catepsina L/metabolismo , Catepsinas , Células Cultivadas , Hepatectomia , Fígado , Lisossomos , Masculino , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Proteólise , Receptores Notch , Transdução de Sinais , Fatores de Transcrição
8.
Am J Hum Genet ; 103(5): 752-768, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.

9.
Mol Syndromol ; 9(4): 219-223, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30140199

RESUMO

Pediatric cardiac tumors are rare and often benign with an incidence of approximately 0.03-0.32% and can be associated with genetic conditions. For example, approximately 3% of individuals with nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, have a cardiac fibroma. NBCCS is also characterized by lamellar or early calcification of the falx, jaw keratocysts, palmar and/or plantar pits, and a predisposition for basal cell carcinomas. Given the management implications of NBCCS, including appropriate cancer screenings and precautions, prompt identification of affected individuals is critical. We report a case of a 6-year-old female presenting with ventricular tachycardia secondary to cardiac fibroma. After diagnosis of recurrent jaw keratocysts, she was clinically and molecularly diagnosed with NBCCS. Identification of a cardiac fibroma should prompt careful assessment of past medical and family history with consideration of a diagnosis of NBCCS.

10.
Am J Med Genet A ; 176(9): 1890-1896, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30152016

RESUMO

Xia-Gibbs syndrome (XGS) is a recently described neurodevelopmental disorder due to heterozygous loss-of-function AHDC1 mutations. XGS is characterized by global developmental delay, intellectual disability, hypotonia, and sleep abnormalities. Here we report the clinical phenotype of five of six individuals with XGS identified prospectively at the Children's Hospital of Philadelphia, a tertiary children's hospital in the USA. Although all five patients demonstrated common clinical features characterized by developmental delay and characteristic facial features, each of our patients showed unique clinical manifestations. Patient one had craniosynostosis; patient two had sensorineural hearing loss and bicuspid aortic valve; patient three had cutis aplasia; patient four had soft, loose skin; and patient five had a lipoma. Differential diagnoses considered for each patient were quite broad, and included craniosynostosis syndromes, connective tissue disorders, and mitochondrial disorders. Exome sequencing identified a heterozygous, de novo AHDC1 loss-of-function mutation in four of five patients; the remaining patient has a 357kb interstitial deletion of 1p36.11p35.3 including AHDC1. Although it remains unknown whether these unique clinical manifestations are rare symptoms of XGS, our findings indicate that the diagnosis of XGS should be considered even in individuals with additional non-neurological symptoms, as the clinical spectrum of XGS may involve such non-neurological manifestations. Adding to the growing literature on XGS, continued cohort studies are warranted in order to both characterize the clinical spectrum of XGS as well as determine standard of care for patients with this diagnosis.

11.
Epilepsy Res ; 145: 89-92, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29933145

RESUMO

Heterozygous de novo or inherited pathogenic variants in the PCDH19 gene cause a spectrum of neurodevelopmental features including developmental delay and seizures. PCDH19 epilepsy was previously known as "epilepsy and mental retardation limited to females", since the condition almost exclusively affects females. It is hypothesized that the co-existence of two populations of neurons, some with and some without PCDH19 protein expression, results in pathologically abnormal interactions between these neurons, a mechanism also referred to as cellular interference. Consequently, PCDH19-related epilepsies are inherited in an atypical X-linked pattern, such that hemizygous, non-mosaic, 46,XY males are typically unaffected, while individuals with a disease-causing PCDH19 variant, mainly heterozygous females and mosaic males, are affected. As a corollary to this hypothesis, an individual with Klinefelter syndrome (KS) (47,XXY) who has a heterozygous disease-causing PCDH19 variant should develop PCDH19-related epilepsy. Here, we report such evidence: - a male child with KS and PCDH19-related epilepsy - supporting the PCDH19 cellular interference disease hypothesis.

12.
Am J Med Genet A ; 176(4): 969-972, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446546

RESUMO

Myelin Regulatory Factor (MYRF) is a transcription factor that has previously been associated with the control of the expression of myelin-related genes. However, it is highly expressed in human tissues and mouse embryonic tissues outside the nervous system such as the stomach, lung, and small intestine. It has not previously been reported as a cause of any Mendelian disease. We report here two males with Scimitar syndrome [MIM 106700], and other features including penoscrotal hypospadias, cryptorchidism, pulmonary hypoplasia, tracheal anomalies, congenital diaphragmatic hernia, cleft spleen, thymic involution, and thyroid fibrosis. Gross neurologic functioning appears to be within normal limits. In both individuals a de novo variant in MYRF was identified using exome sequencing. Neither variant is found in gnomAD. Heterozygous variants in MYRF should be considered in patients with variants of Scimitar syndrome and urogenital anomalies.

13.
Am J Med Genet A ; 176(1): 241-245, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130632

RESUMO

Dedicator of cytokinesis (DOCK) family are evolutionary conserved guanine nucleotide exchange factors (GEFs) for the Rho GTPases, Rac, and Cdc42. DOCK3 functions as a GEF for Rac1, and plays an important role in promoting neurite and axonal growth by stimulating actin dynamics and microtubule assembly pathways in the central nervous system. Here we report a boy with developmental delay, hypotonia, and ataxia due to biallelic DOCK3 deletion. Chromosomal single nucleotide polymorphism (SNP) microarray analysis detected a 170 kb homozygous deletion including exons 6-12 of the DOCK3 gene at 3p21.2. Symptoms of our proband resembles a phenotype of Dock3 knockout mice exhibiting sensorimotor impairments. Furthermore, our proband has clinical similarities with two siblings with compound heterozygous loss-of-function mutations of DOCK3 reported in [Helbig, Mroske, Moorthy, Sajan, and Velinov (); https://doi.org/10.1111/cge.12995]. Biallelic DOCK3 mutations cause a neurodevelopmental disorder characterized by unsteady gait, hypotonia, and developmental delay.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Proteínas do Tecido Nervoso/genética , Alelos , Criança , Pré-Escolar , Facies , Feminino , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
14.
Mol Syndromol ; 7(5): 262-273, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27867341

RESUMO

Some genetic disorders caused by mutations in genes encoding components of the transcriptional machinery as well as proteins involved in epigenetic modification of the genome share many overlapping features, such as facial dysmorphisms, growth problems and developmental delay/intellectual disability. As a basis for some shared phenotypic characteristics in these syndromes, a similar transcriptome disturbance, characterized by global transcriptional dysregulation, is believed to play a major role. In this review article, a general overview of gene transcription is provided, and the current knowledge of the mechanisms underlying some disorders of transcriptional regulation, such as Rubinstein- Taybi, Coffin-Siris, Cornelia de Lange, and CHOPS syndromes, are discussed.

15.
Am J Med Genet A ; 170(11): 2889-2894, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27566442

RESUMO

In a clinical setting, the number of organ systems involved is crucial for the differential diagnosis of congenital genetic disorders. When more than one organ system is involved, a syndromic diagnosis is suspected. In this report, we describe three patients with apparently syndromic features. Exome sequencing identified non-syndromic gene mutations as a potential cause of part of their phenotype. The first patient (Patient 1) is a girl with cleft lip/palate, meningoencephalocele, tetralogy of Fallot, and developmental delay. The second and third patients (Patients 2 and 3) are brothers with developmental delay, deafness, and low bone mineral density. Exome sequencing revealed the presence of a CDH1 mutation in Patient 1 and a PLS3 mutation in Patients 2 and 3. CDH1 mutations are known to be associated with non-syndromic cleft lip/palate, while PLS3 mutations are associated with osteoporosis. Thus, these variants may explain a part of the complex phenotype of the patients, although the effects of these missense variants need to be evaluated by functional assays in order to prove pathogenicity. On the basis of these findings, we emphasize the importance of scrutinizing non-syndromic gene mutations even in individuals with apparently syndromic features. © 2016 Wiley Periodicals, Inc.


Assuntos
Exoma , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Adulto , Antígenos CD , Encéfalo/patologia , Caderinas/química , Caderinas/genética , Criança , Biologia Computacional/métodos , Análise Mutacional de DNA , Facies , Feminino , Heterozigoto , Humanos , Lactente , Imagem por Ressonância Magnética , Masculino , Modelos Moleculares , Conformação Proteica , Síndrome
16.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476655

RESUMO

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Anormalidades Craniofaciais/genética , Mutação , Adulto , Proteína Coatomer/metabolismo , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome
17.
Mol Genet Genomic Med ; 4(3): 257-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27247953

RESUMO

BACKGROUND: Pallister-Killian syndrome (PKS) is a prototypic mosaic aneuploidy syndrome caused by mosaic supernumerary marker isochromosome 12p. Cells possessing the isochromosome 12p rapidly diminish after birth in the peripheral blood, often necessitating a skin biopsy for diagnosis. Therefore, a genomic testing that is capable of detecting low percent mosaic isochromosome 12p is preferred for the diagnosis of PKS. METHODS: The utility of the droplet digital PCR system in quantifying the mosaic ratio of isochromosome 12p in PKS was evaluated. RESULTS: Droplet digital PCR was able to precisely quantify isochromosome 12p mosaic ratio, and copy number measured by droplet digital PCR was correlated well with that of fluorescence in situ hybridization analysis. CONCLUSION: Droplet digital PCR should be considered as an effective tool for both clinical and research analytics to precisely quantify mosaic genomic copy number alterations or mosaic mutations.

18.
Am J Med Genet A ; 170A(2): 471-475, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463753

RESUMO

Alagille syndrome is a multisystem developmental disorder characterized by bile duct paucity, congenital heart disease, vertebral anomalies, posterior embryotoxon, and characteristic facial features. Alagille syndrome is typically the result of germline mutations in JAG1 or NOTCH2 and is one of several human diseases caused by Notch signaling abnormalities. A wide phenotypic spectrum has been well documented in Alagille syndrome. Therefore, monozygotic twins with Alagille syndrome provide a unique opportunity to evaluate potential phenotypic modifiers such as environmental factors or stochastic effects of gene expression. In this report, we describe an Alagille syndrome monozygotic twin pair with discordant placental and clinical findings. We propose that environmental factors such as prenatal hypoxia may have played a role in determining the phenotypic severity.


Assuntos
Síndrome de Alagille/diagnóstico , Meio Ambiente , Hipóxia/complicações , Placenta/patologia , Gêmeos Monozigóticos , Adulto , Síndrome de Alagille/etiologia , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Mutação/genética , Gravidez , Proteínas Serrate-Jagged
19.
Mol Syndromol ; 6(2): 99-103, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26279656

RESUMO

Rubinstein-Taybi syndrome (RSTS) is a multisystem developmental disorder characterized by facial dysmorphisms, broad thumbs and halluces, growth retardation, and intellectual disability. In about 8% of RSTS cases, mutations are found in EP300. Previously, the EP300 mutation has been shown to cause the highly variable RSTS phenotype. Using exome sequencing, we identified a de novo EP300 frameshift mutation in a proband with coloboma, facial asymmetry and imperforate anus with minimal RSTS features. Previous molecular studies have demonstrated the importance of EP300 in oculogenesis, supporting the possibility that EP300 mutation may cause ocular coloboma. Since a wide phenotypic spectrum is well known in EP300-associated RSTS cases, the atypical phenotype identified in our proband may be an example of rare manifestations of RSTS.

20.
J Biol Chem ; 290(35): 21713-23, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26175158

RESUMO

The androgen receptor (AR), a nuclear receptor superfamily transcription factor, plays a key role in prostate cancer. AR signaling is the principal target for prostate cancer treatment, but current androgen-deprivation therapies cannot completely abolish AR signaling because of the heterogeneity of prostate cancers. Therefore, unraveling the mechanism of AR reactivation in androgen-depleted conditions can identify effective prostate cancer therapeutic targets. Increasing evidence indicates that AR activity is mediated by the interplay of modifying/demodifying enzymatic co-regulators. To better understand the mechanism of AR transcriptional activity regulation, we used antibodies against AR for affinity purification and identified the deubiquitinating enzyme ubiquitin-specific protease 7, USP7 as a novel AR co-regulator in prostate cancer cells. We showed that USP7 associates with AR in an androgen-dependent manner and mediates AR deubiquitination. Sequential ChIP assays indicated that USP7 forms a complex with AR on androgen-responsive elements of target genes upon stimulation with the androgen 5α-dihydrotestosterone. Further investigation indicated that USP7 is necessary to facilitate androgen-activated AR binding to chromatin. Transcriptome profile analysis of USP7-knockdown LNCaP cells also revealed the essential role of USP7 in the expression of a subset of androgen-responsive genes. Hence, inhibition of USP7 represents a compelling therapeutic strategy for the treatment of prostate cancer.


Assuntos
Cromatina/metabolismo , Receptores Androgênicos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Androgênios/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Elementos de Resposta/genética , Peptidase 7 Específica de Ubiquitina , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA