Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Am J Bot ; 97(2): 337-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21622394


Puya (Bromeliaceae), a large genus of terrestrial bromeliads found throughout a range of elevations in the Andes and central Chile, is of great systematic, evolutionary, and biogeographical interest. This first molecular phylogenetic study of Puya and related bromeliads employs matK, trnS-trnG, rps16, and PHYC sequences. Chloroplast DNA, nuclear DNA, and combined DNA data all place Puya closest to subfamily Bromelioideae. Nuclear and combined data support Puya as monophyletic, and the two subgenera are nonmonophyletic. All data indicate that the Chilean species of Puya are early diverging within the genus, consistent with Chilean genera as the first-diverging members of subfamily Bromelioideae. Central Chile is identified as a key region for understanding the biogeographical history of Bromeliaceae, as is true with other South American plant groups. A complicated history involving early chloroplast capture and later secondary hybridization and/or introgression is seen in Chilean lineages. These events help explain the occurrence of sterile inflorescence tips, floral color and shape, and leaf indument. The ecological radiation of Puya appears coincident with the final, recent rise of the Andes and subsequent high-elevation habitat diversification. Additionally, geographical distribution, rather than moisture or elevational adaptations, correlates to species relationships. Evolution of CAM photosynthesis has occurred multiple times.

Ann Bot ; 101(7): 983-95, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285357


BACKGROUND AND AIMS: Species of Araceae accumulate calcium oxalate in the form of characteristically grooved needle-shaped raphide crystals and multi-crystal druses. This study focuses on the distribution and development of raphides and druses during leaf growth in ten species of Amorphophallus (Araceae) in order to determine the crystal macropatterns and the underlying ultrastructural features associated with formation of the unusual raphide groove. METHODS: Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and both bright-field and polarized-light microscopy were used to study a range of developmental stages. KEY RESULTS: Raphide crystals are initiated very early in plant development. They are consistently present in most species and have a fairly uniform distribution within mature tissues. Individual raphides may be formed by calcium oxalate deposition within individual crystal chambers in the vacuole of an idioblast. Druse crystals form later in the true leaves, and are absent from some species. Distribution of druses within leaves is more variable. Druses initially develop at leaf tips and then increase basipetally as the leaf ages. Druse development may also be initiated in crystal chambers. CONCLUSIONS: The unusual grooved raphides in Amorphophallus species probably result from an unusual crystal chamber morphology. There are multiple systems of transport and biomineralization of calcium into the vacuole of the idioblast. Differences between raphide and druse idioblasts indicate different levels of cellular regulation. The relatively early development of raphides provides a defensive function in soft, growing tissues, and restricts build-up of dangerously high levels of calcium in tissues that lack the ability to adequately regulate calcium. The later development of druses could be primarily for calcium sequestration.

Araceae/ultraestrutura , Oxalato de Cálcio/metabolismo , Araceae/citologia , Araceae/metabolismo , Oxalato de Cálcio/química , Cristalização , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura
Am J Bot ; 95(2): 229-40, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21632347


The evolution of the inflorescence head in Asteraceae is important in the diversification of this largest angiosperm family. The aggregation of heads into higher-order capitulescences (secondary heads or syncephalia) is considered evolutionarily advanced. The genera Moscharia, Nassauvia, Polyachyrus, and Triptilion of the subtribe Nassauviinae (Mutisieae) have syncephalia with differing degrees of capitula condensation. ITS and plastid trnL-trnF regions were analyzed separately and together using maximum parsimony and maximum likelihood to examine the evolution of syncephalia in the Nassauviinae. The four genera displaying syncephalia do not form a clade minus taxa without syncephalia, indicating that secondary heads in Nassauviinae have either convergently evolved twice in the subtribe (or, very unlikely) once with multiple reversions. Strong support was obtained for a sister relationship between Leucheria (without syncephalium) and Polyachyrus, and both sister to Moscharia. Nassauvia and Triptilion form a distinct clade but are sister to other genera, Perezia and Panphalea, without syncephalium. Previous hypotheses postulated the evolution from simple to more complex secondary heads. We show that the ancestor of Moscharia, Polyachyrus, and Leucheria, in a more arid habitat, had a complex type of secondary head, and loss of complexity occurred in response to a shift from arid to mesic conditions.