Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 488, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627144

RESUMO

BACKGROUND: Population genetic studies of humans make increasing use of high-throughput sequencing in order to capture diversity in an unbiased way. There is an abundance of sequencing technologies, bioinformatic tools and the available genomes are increasing in number. Studies have evaluated and compared some of these technologies and tools, such as the Genome Analysis Toolkit (GATK) and its "Best Practices" bioinformatic pipelines. However, studies often focus on a few genomes of Eurasian origin in order to detect technical issues. We instead surveyed the use of the GATK tools and established a pipeline for processing high coverage full genomes from a diverse set of populations, including Sub-Saharan African groups, in order to reveal challenges from human diversity and stratification. RESULTS: We surveyed 29 studies using high-throughput sequencing data, and compared their strategies for data pre-processing and variant calling. We found that processing of data is very variable across studies and that the GATK "Best Practices" are seldom followed strictly. We then compared three versions of a GATK pipeline, differing in the inclusion of an indel realignment step and with a modification of the base quality score recalibration step. We applied the pipelines on a diverse set of 28 individuals. We compared the pipelines in terms of count of called variants and overlap of the callsets. We found that the pipelines resulted in similar callsets, in particular after callset filtering. We also ran one of the pipelines on a larger dataset of 179 individuals. We noted that including more individuals at the joint genotyping step resulted in different counts of variants. At the individual level, we observed that the average genome coverage was correlated to the number of variants called. CONCLUSIONS: We conclude that applying the GATK "Best Practices" pipeline, including their recommended reference datasets, to underrepresented populations does not lead to a decrease in the number of called variants compared to alternative pipelines. We recommend to aim for coverage of > 30X if identifying most variants is important, and to work with large sample sizes at the variant calling stage, also for underrepresented individuals and populations.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL
2.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488939

RESUMO

As our ancestors migrated throughout different continents, natural selection increased the presence of alleles advantageous in the new environments. Heritable variations that alter the susceptibility to diseases vary with the historical period, the virulence of the infections, and their geographical spread. In this study we built polygenic scores for heritable traits that influence the genetic adaptation in the production of cytokines and immune-mediated disorders, including infectious, inflammatory, and autoimmune diseases, and applied them to the genomes of several ancient European populations. We observed that the advent of the Neolithic was a turning point for immune-mediated traits in Europeans, favoring those alleles linked with the development of tolerance against intracellular pathogens and promoting inflammatory responses against extracellular microbes. These evolutionary patterns are also associated with an increased presence of traits related to inflammatory and auto-immune diseases.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Evolução Molecular , Sistema Imunitário , Adaptação Fisiológica , Alelos , Doenças Autoimunes , Expressão Gênica , Inflamação , Seleção Genética
3.
Curr Biol ; 31(19): 4219-4230.e10, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388371

RESUMO

Multiple lines of evidence show that modern humans interbred with archaic Denisovans. Here, we report an account of shared demographic history between Australasians and Denisovans distinctively in Island Southeast Asia. Our analyses are based on ∼2.3 million genotypes from 118 ethnic groups of the Philippines, including 25 diverse self-identified Negrito populations, along with high-coverage genomes of Australopapuans and Ayta Magbukon Negritos. We show that Ayta Magbukon possess the highest level of Denisovan ancestry in the world-∼30%-40% greater than that of Australians and Papuans-consistent with an independent admixture event into Negritos from Denisovans. Together with the recently described Homo luzonensis, we suggest that there were multiple archaic species that inhabited the Philippines prior to the arrival of modern humans and that these archaic groups may have been genetically related. Altogether, our findings unveil a complex intertwined history of modern and archaic humans in the Asia-Pacific region, where distinct Islander Denisovan populations differentially admixed with incoming Australasians across multiple locations and at various points in time.

4.
Am J Phys Anthropol ; 176(2): 223-236, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34308549

RESUMO

OBJECTIVE: We aim to identify maternal genetic affinities between the Middle to Final Neolithic (3850-2300 BC) populations from present-day Poland and possible genetic influences from the Pontic steppe. MATERIALS AND METHODS: We conducted ancient DNA studies from populations associated with Zlota, Globular Amphora, Funnel Beaker, and Corded Ware cultures (CWC). We sequenced genomic libraries on Illumina platform to generate 86 complete ancient mitochondrial genomes. Some of the samples were enriched for mitochondrial DNA using hybridization capture. RESULTS: The maternal genetic composition found in Zlota-associated individuals resembled that found in people associated with the Globular Amphora culture which indicates that both groups likely originated from the same maternal genetic background. Further, these two groups were closely related to the Funnel Beaker culture-associated population. None of these groups shared a close affinity to CWC-associated people. Haplogroup U4 was present only in the CWC group and absent in Zlota group, Globular Amphora, and Funnel Beaker cultures. DISCUSSION: The prevalence of mitochondrial haplogroups of Neolithic farmer origin identified in Early, Middle and Late Neolithic populations suggests a genetic continuity of these maternal lineages in the studied area. Although overlapping in time - and to some extent - in cultural expressions, none of the studied groups (Zlota, Globular Amphora, Funnel Beaker), shared a close genetic affinity to CWC-associated people, indicating a larger extent of cultural influence from the Pontic steppe than genetic exchange. The higher frequency of haplogroup U5b found in populations associated with Funnel Beaker, Globular Amphora, and Zlota cultures suggest a gradual maternal genetic influx from Mesolithic hunter-gatherers. Moreover, presence of haplogroup U4 in Corded Ware groups is most likely associated with the migrations from the Pontic steppe at the end of the Neolithic and supports the observed genetic distances.


Assuntos
DNA Antigo , DNA Mitocondrial/genética , Grupo com Ancestrais do Continente Europeu/genética , Antropologia Física , Haplótipos/genética , História Antiga , Humanos , Polônia
5.
Curr Biol ; 31(14): 2973-2983.e9, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34010592

RESUMO

Few complete human genomes from the European Early Upper Palaeolithic (EUP) have been sequenced. Using novel sampling and DNA extraction approaches, we sequenced the genome of a woman from "Pestera Muierii," Romania who lived ∼34,000 years ago to 13.5× coverage. The genome shows similarities to modern-day Europeans, but she is not a direct ancestor. Although her cranium exhibits both modern human and Neanderthal features, the genome shows similar levels of Neanderthal admixture (∼3.1%) to most EUP humans but only half compared to the ∼40,000-year-old Pestera Oase 1. All EUP European hunter-gatherers display high genetic diversity, demonstrating that the severe loss of diversity occurred during and after the Last Glacial Maximum (LGM) rather than just during the out-of-Africa migration. The prevalence of genetic diseases is expected to increase with low diversity; however, pathogenic variant load was relatively constant from EUP to modern times, despite post-LGM hunter-gatherers having the lowest diversity ever observed among Europeans.

6.
Nature ; 592(7855): 583-589, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854233

RESUMO

The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.

7.
Curr Biol ; 31(11): 2455-2468.e18, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857427

RESUMO

The social organization of the first fully sedentary societies that emerged during the Neolithic period in Southwest Asia remains enigmatic,1 mainly because material culture studies provide limited insight into this issue. However, because Neolithic Anatolian communities often buried their dead beneath domestic buildings,2 household composition and social structure can be studied through these human remains. Here, we describe genetic relatedness among co-burials associated with domestic buildings in Neolithic Anatolia using 59 ancient genomes, including 22 new genomes from Asikli Höyük and Çatalhöyük. We infer pedigree relationships by simultaneously analyzing multiple types of information, including autosomal and X chromosome kinship coefficients, maternal markers, and radiocarbon dating. In two early Neolithic villages dating to the 9th and 8th millennia BCE, Asikli Höyük and Boncuklu, we discover that siblings and parent-offspring pairings were frequent within domestic structures, which provides the first direct indication of close genetic relationships among co-burials. In contrast, in the 7th millennium BCE sites of Çatalhöyük and Barcin, where we study subadults interred within and around houses, we find close genetic relatives to be rare. Hence, genetic relatedness may not have played a major role in the choice of burial location at these latter two sites, at least for subadults. This supports the hypothesis that in Çatalhöyük,3-5 and possibly in some other Neolithic communities, domestic structures may have served as burial location for social units incorporating biologically unrelated individuals. Our results underscore the diversity of kin structures in Neolithic communities during this important phase of sociocultural development.

8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753512

RESUMO

Island Southeast Asia has recently produced several surprises regarding human history, but the region's complex demography remains poorly understood. Here, we report ∼2.3 million genotypes from 1,028 individuals representing 115 indigenous Philippine populations and genome-sequence data from two ∼8,000-y-old individuals from Liangdao in the Taiwan Strait. We show that the Philippine islands were populated by at least five waves of human migration: initially by Northern and Southern Negritos (distantly related to Australian and Papuan groups), followed by Manobo, Sama, Papuan, and Cordilleran-related populations. The ancestors of Cordillerans diverged from indigenous peoples of Taiwan at least ∼8,000 y ago, prior to the arrival of paddy field rice agriculture in the Philippines ∼2,500 y ago, where some of their descendants remain to be the least admixed East Asian groups carrying an ancestry shared by all Austronesian-speaking populations. These observations contradict an exclusive "out-of-Taiwan" model of farming-language-people dispersal within the last four millennia for the Philippines and Island Southeast Asia. Sama-related ethnic groups of southwestern Philippines additionally experienced some minimal South Asian gene flow starting ∼1,000 y ago. Lastly, only a few lowlanders, accounting for <1% of all individuals, presented a low level of West Eurasian admixture, indicating a limited genetic legacy of Spanish colonization in the Philippines. Altogether, our findings reveal a multilayered history of the Philippines, which served as a crucial gateway for the movement of people that ultimately changed the genetic landscape of the Asia-Pacific region.


Assuntos
Migração Humana/história , Grupos Populacionais/história , Agricultura , Ásia Sudeste/etnologia , Austrália/etnologia , Feminino , Deriva Genética , Genômica , História Antiga , Humanos , Masculino , Oryza , Filipinas , Grupos Populacionais/genética , Taiwan/etnologia
9.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33769498

RESUMO

The patterns of genetic variation within and among individuals and populations can be used to make inferences about the evolutionary forces that generated those patterns. Numerous population genetic approaches have been developed in order to infer evolutionary history. Here, we present the "Two-Two (TT)" and the "Two-Two-outgroup (TTo)" methods; two closely related approaches for estimating divergence time based in coalescent theory. They rely on sequence data from two haploid genomes (or a single diploid individual) from each of two populations. Under a simple population-divergence model, we derive the probabilities of the possible sample configurations. These probabilities form a set of equations that can be solved to obtain estimates of the model parameters, including population split times, directly from the sequence data. This transparent and computationally efficient approach to infer population divergence time makes it possible to estimate time scaled in generations (assuming a mutation rate), and not as a compound parameter of genetic drift. Using simulations under a range of demographic scenarios, we show that the method is relatively robust to migration and that the TTo method can alleviate biases that can appear from drastic ancestral population size changes. We illustrate the utility of the approaches with some examples, including estimating split times for pairs of human populations as well as providing further evidence for the complex relationship among Neandertals and Denisovans and their ancestors.


Assuntos
Taxa de Mutação , Polimorfismo Genético , População/genética , Animais , DNA Antigo , Deriva Genética , Humanos , Homem de Neandertal/genética , Tempo
10.
Genome Biol Evol ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760047

RESUMO

Lactase persistence (LP) is a well-studied example of a Mendelian trait under selection in some human groups due to gene-culture coevolution. We investigated the frequencies of genetic variants linked to LP in Sudanese and South Sudanese populations. These populations have diverse subsistence patterns, and some are dependent on milk to various extents, not only from cows but also from other livestock such as camels and goats. We sequenced a 316-bp region involved in regulating the expression of the LCT gene on chromosome 2, which encompasses five polymorphisms that have been associated with LP. Pastoralist populations showed a higher frequency of LP-associated alleles compared with nonpastoralist groups, hinting at positive selection also among northeast African pastoralists. Among the LP variants, the -14009:G variant occurs at the highest frequency among the investigated populations, followed by the -13915:G variant, which is likely of Middle Eastern origin, consistent with Middle Eastern gene flow to the Sudanese populations. There was no incidence of the "East African" LP allele (-14010:C) in the Sudanese and South Sudanese groups, and only one heterozygous individual for the "European" LP allele (-13910:T), suggesting limited recent admixture from these geographic regions. The Beja population of the Beni Amer show three different LP variants at substantial and similar levels, resulting in one of the greatest aggregation of LP variants among all populations across the world.

11.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523963

RESUMO

We present genome-wide data from 40 individuals dating to c.16,900 to 550 years ago in northeast Asia. We describe hitherto unknown gene flow and admixture events in the region, revealing a complex population history. While populations east of Lake Baikal remained relatively stable from the Mesolithic to the Bronze Age, those from Yakutia and west of Lake Baikal witnessed major population transformations, from the Late Upper Paleolithic to the Neolithic, and during the Bronze Age, respectively. We further locate the Asian ancestors of Paleo-Inuits, using direct genetic evidence. Last, we report the most northeastern ancient occurrence of the plague-related bacterium, Yersinia pestis Our findings indicate the highly connected and dynamic nature of northeast Asia populations throughout the Holocene.

12.
Am J Phys Anthropol ; 174(4): 701-713, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539553

RESUMO

Previous studies show that the indigenous people of the southern Cape of South Africa were dramatically impacted by the arrival of European colonists starting ~400 years ago and their descendants are today mixed with Europeans and Asians. To gain insight on the occupants of the Vaalkrans Shelter located at the southernmost tip of Africa, we investigated the genetic make-up of an individual who lived there about 200 years ago. We further contextualize the genetic ancestry of this individual among prehistoric and current groups. From a hair sample excavated at the shelter, which was indirectly dated to about 200 years old, we sequenced the genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individuals from southern Africa spanning the last 2000 years. We show that the individual from Vaalkrans was a man who traced ~80% of his ancestry to local southern San hunter-gatherers and ~20% to a mixed East African-Eurasian source. This genetic make-up is similar to modern-day Khoekhoe individuals from the Northern Cape Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's descendants have likely been assimilated into mixed-ancestry "Coloured" groups. The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals lived in the southern Cape as late as 200 years ago, without mixing with non-African colonists or Bantu-speaking farmers. Our findings are also consistent with the model of a Holocene pastoralist migration, originating in Eastern Africa, shaping the genomic landscape of historic and current southern African populations.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Grupos Étnicos/genética , Genética Populacional/métodos , Cabelo/química , Grupo com Ancestrais do Continente Africano/história , Antropologia Física , Grupos Étnicos/história , Genoma Humano/genética , História do Século XIX , História Antiga , Migração Humana/história , Humanos , Polimorfismo de Nucleotídeo Único/genética , África do Sul
13.
Hum Mol Genet ; 30(R1): R2-R10, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33438014

RESUMO

Africa is the continent with the greatest genetic diversity among humans and the level of diversity is further enhanced by incorporating non-majority groups, which are often understudied. Many of today's minority populations historically practiced foraging lifestyles, which were the only subsistence strategies prior to the rise of agriculture and pastoralism, but only a few groups practicing these strategies remain today. Genomic investigations of Holocene human remains excavated across the African continent show that the genetic landscape was vastly different compared to today's genetic landscape and that many groups that today are population isolate inhabited larger regions in the past. It is becoming clear that there are periods of isolation among groups and geographic areas, but also genetic contact over large distances throughout human history in Africa. Genomic information from minority populations and from prehistoric remains provide an invaluable source of information on the human past, in particular deep human population history, as Holocene large-scale population movements obscure past patterns of population structure. Here we revisit questions on the nature and time of the radiation of early humans in Africa, the extent of gene-flow among human populations as well as introgression from archaic and extinct lineages on the continent.

14.
Eur J Hum Genet ; 29(2): 325-337, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33005019

RESUMO

Taste is essential for the interaction of animals with their food and has co-evolved with diet. Humans have peopled a large range of environments and present a wide range of diets, but little is known about the diversity and evolution of human taste perception. We measured taste recognition thresholds across populations differing in lifestyles (hunter gatherers and farmers from Central Africa, nomad herders, and farmers from Central Asia). We also generated genome-wide genotype data and performed association studies and selection scans in order to link the phenotypic variation in taste sensitivity with genetic variation. We found that hunter gatherers have lower overall sensitivity as well as lower sensitivity to quinine and fructose than their farming neighbors. In parallel, there is strong population divergence in genes associated with tongue morphogenesis and genes involved in the transduction pathway of taste signals in the African populations. We find signals of recent selection in bitter taste-receptor genes for all four populations. Enrichment analysis on association scans for the various tastes confirmed already documented associations and revealed novel GO terms that are good candidates for being involved in taste perception. Our framework permitted us to gain insight into the genetic basis of taste sensitivity variation across populations and lifestyles.

15.
Sci Rep ; 10(1): 11850, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678112

RESUMO

Estimates of individual-level genomic ancestry are routinely used in human genetics, and related fields. The analysis of population structure and genomic ancestry can yield insights in terms of modern and ancient populations, allowing us to address questions regarding admixture, and the numbers and identities of the parental source populations. Unrecognized population structure is also an important confounder to correct for in genome-wide association studies. However, it remains challenging to work with heterogeneous datasets from multiple studies collected by different laboratories with diverse genotyping and imputation protocols. This work presents a new approach and an accompanying open-source toolbox that facilitates a robust integrative analysis for population structure and genomic ancestry estimates for heterogeneous datasets. We show robustness against individual outliers and different protocols for the projection of new samples into a reference ancestry space, and the ability to reveal and adjust for population structure in a simulated case-control admixed population. Given that visually evident and easily recognizable patterns of human facial characteristics co-vary with genomic ancestry, and based on the integration of three different sources of genome data, we generate average 3D faces to illustrate genomic ancestry variations within the 1,000 Genome project and for eight ancient-DNA profiles, respectively.


Assuntos
Identificação Biométrica/métodos , Face/anatomia & histologia , Genoma Humano , Genética Humana/métodos , Padrões de Herança , Modelos Estatísticos , Grupos de Populações Continentais/história , Conjuntos de Dados como Assunto , Reconhecimento Facial/fisiologia , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , História do Século XXI , História Antiga , Humanos , Processamento de Imagem Assistida por Computador , Masculino
16.
Genome Biol Evol ; 12(7): 1031-1039, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697300

RESUMO

Although the human Y chromosome has effectively shown utility in uncovering facets of human evolution and population histories, the ascertainment bias present in early Y-chromosome variant data sets limited the accuracy of diversity and TMRCA estimates obtained from them. The advent of next-generation sequencing, however, has removed this bias and allowed for the discovery of thousands of new variants for use in improving the Y-chromosome phylogeny and computing estimates that are more accurate. Here, we describe the high-coverage sequencing of the whole Y chromosome in a data set of 19 male Khoe-San individuals in comparison with existing whole Y-chromosome sequence data. Due to the increased resolution, we potentially resolve the source of haplogroup B-P70 in the Khoe-San, and reconcile recently published haplogroup A-M51 data with the most recent version of the ISOGG Y-chromosome phylogeny. Our results also improve the positioning of tentatively placed new branches of the ISOGG Y-chromosome phylogeny. The distribution of major Y-chromosome haplogroups in the Khoe-San and other African groups coincide with the emerging picture of African demographic history; with E-M2 linked to the agriculturalist Bantu expansion, E-M35 linked to pastoralist eastern African migrations, B-M112 linked to earlier east-south gene flow, A-M14 linked to shared ancestry with central African rainforest hunter-gatherers, and A-M51 potentially unique to the Khoe-San.


Assuntos
Cromossomos Humanos Y , Genoma Humano , África Austral , Feminino , Variação Genética , Haplótipos , Humanos , Masculino , Filogenia , Sequenciamento Completo do Genoma
17.
Mol Biol Evol ; 37(10): 2944-2954, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697301

RESUMO

The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-, and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of-Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all humans at the time.


Assuntos
Evolução Biológica , Genoma Humano , Migração Humana , Povos Indígenas/genética , Densidade Demográfica , África ao Sul do Saara , Humanos , Filogeografia
18.
Cell ; 181(6): 1218-1231.e27, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32492404

RESUMO

The discovery of the 2,000-year-old Dead Sea Scrolls had an incomparable impact on the historical understanding of Judaism and Christianity. "Piecing together" scroll fragments is like solving jigsaw puzzles with an unknown number of missing parts. We used the fact that most scrolls are made from animal skins to "fingerprint" pieces based on DNA sequences. Genetic sorting of the scrolls illuminates their textual relationship and historical significance. Disambiguating the contested relationship between Jeremiah fragments supplies evidence that some scrolls were brought to the Qumran caves from elsewhere; significantly, they demonstrate that divergent versions of Jeremiah circulated in parallel throughout Israel (ancient Judea). Similarly, patterns discovered in non-biblical scrolls, particularly the Songs of the Sabbath Sacrifice, suggest that the Qumran scrolls represent the broader cultural milieu of the period. Finally, genetic analysis divorces debated fragments from the Qumran scrolls. Our study demonstrates that interdisciplinary approaches enrich the scholar's toolkit.


Assuntos
Sequência de Bases/genética , Genética/história , Pele/metabolismo , Animais , Cristianismo/história , História Antiga , Humanos , Israel , Judaísmo/história
19.
Am J Phys Anthropol ; 172(4): 638-649, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32497286

RESUMO

OBJECTIVES: In order to understand contacts between cultural spheres in the third millennium BC, we investigated the impact of a new herder culture, the Battle Axe culture, arriving to Scandinavia on the people of the sub-Neolithic hunter-gatherer Pitted Ware culture. By investigating the genetic make-up of Pitted Ware culture people from two types of burials (typical Pitted Ware culture burials and Battle Axe culture-influenced burials), we could determine the impact of migration and the impact of cultural influences. METHODS: We sequenced and analyzed the genomes of 25 individuals from typical Pitted Ware culture burials and from Pitted Ware culture burials with Battle Axe culture influences in order to determine if the different burial types were associated with different gene-pools. RESULTS: The genomic data show that all individuals belonged to one genetic population-a population associated with the Pitted Ware culture-irrespective of the burial style. CONCLUSION: We conclude that the Pitted Ware culture communities were not impacted by gene-flow, that is, via migration or exchange of mates. These different cultural expressions in the Pitted Ware culture burials are instead a consequence of cultural exchange.


Assuntos
Grupo com Ancestrais do Continente Europeu , Migração Humana/história , Sepultamento/história , Cromossomos Humanos Y/genética , DNA Antigo/análise , DNA Mitocondrial/genética , Grupo com Ancestrais do Continente Europeu/etnologia , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Genética Populacional , Genoma Humano/genética , História Antiga , Humanos , Masculino , Países Escandinavos e Nórdicos/etnologia , Dente/química
20.
Am J Phys Anthropol ; 172(2): 176-188, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297323

RESUMO

OBJECTIVE: In this work we aim to investigate the origins and genetic affinities of Bronze Age populations (2,400-1,100 BC) from the region of southern Poland and to trace maternal kinship patterns present in the burials of those populations by the use of complete mitochondrial genomes. MATERIALS AND METHODS: We performed ancient DNA analyses for Bronze Age individuals from present-day Poland associated with the Strzyzow culture, the Mierzanowice culture, and the Trzciniec Cultural circle. To obtain complete mitochondrial genomes, we sequenced genomic libraries using Illumina platform. Additionally, hybridization capture was used to enrich some of the samples for mitochondrial DNA. AMS 14 C-dating was conducted for 51 individuals to verify chronological and cultural attribution of the analyzed samples. RESULTS: Complete ancient mitochondrial genomes were generated for 80 of the Bronze Age individuals from present-day Poland. The results of the population genetic analyses indicate close maternal genetic affinity between Mierzanowice, Trzciniec, and Corded Ware culture-associated populations. This is in contrast to the genetically more distant Strzyzów people that displayed closer maternal genetic relation to steppe populations associated with the preceding Yamnaya culture and Catacomb culture, and with later Scythians. Potential maternal kinship relations were identified in burials of Mierzanowice and Trzciniec populations analyzed in this study. DISCUSSION: Results revealed genetic continuity from the Late Neolithic Corded Ware groups to Bronze Age Mierzanowice and Trzciniec-associated populations, and possible additional genetic contribution from the steppe to the formation of the Strzyzów-associated group at the end of 3rd millennium BC. Mitochondrial patterns indicated several pairs of potentially maternally related individuals mostly in Trzciniec-associated group.


Assuntos
DNA Antigo/análise , Grupo com Ancestrais do Continente Europeu/genética , Genética Populacional , Genoma Mitocondrial/genética , Adulto , Antropologia Física , Cemitérios , Criança , Feminino , Haplótipos/genética , História Antiga , Migração Humana , Humanos , Masculino , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...