Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992898

RESUMO

Studies investigating exercise-induced gut microbiota have reported that people who exercise regularly have a healthy gut microbial environment compared with sedentary individuals. In contrast, recent studies have shown that high protein intake without dietary fiber not only offsets the positive effect of exercise on gut microbiota but also significantly lowers the relative abundance of beneficial bacteria. In this study, to resolve this conundrum and find the root cause, we decided to narrow down subjects according to diet. Almost all of the studies had subjects on an ad libitum diet, however, we wanted subjects on a simplified diet. Bodybuilders who consumed an extremely high-protein/low-carbohydrate diet were randomly assigned to a probiotics intake group (n = 8) and a placebo group (n = 7) to find the intervention effect. Probiotics, comprising Lactobacillus acidophilus, L. casei, L. helveticus, and Bifidobacterium bifidum, were consumed for 60 days. As a result, supplement intake did not lead to a positive effect on the gut microbial environment or concentration of short-chain fatty acids (SCFAs). It has been shown that probiotic intake is not as effective as ergogenic aids for athletes such as bodybuilders with extreme dietary regimens, especially protein and dietary fiber. To clarify the influence of nutrition-related factors that affect the gut microbial environment, we divided the bodybuilders (n = 28) into groups according to their protein and dietary fiber intake and compared their gut microbial environment with that of sedentary male subjects (n = 15). Based on sedentary Korean recommended dietary allowance (KRDA), the bodybuilders' intake of protein and dietary fiber was categorized into low, proper, and excessive groups, as follows: high-protein/restricted dietary fiber (n = 12), high-protein/adequate dietary fiber (n = 10), or adequate protein/restricted dietary fiber (n = 6). We found no significant differences in gut microbial diversity or beneficial bacteria between the high-protein/restricted dietary fiber and the healthy sedentary groups. However, when either protein or dietary fiber intake met the KRDA, gut microbial diversity and the relative abundance of beneficial bacteria showed significant differences to those of healthy sedentary subjects. These results suggest that the positive effect of exercise on gut microbiota is dependent on protein and dietary fiber intake. The results also suggest that the question of adequate nutrition should be addressed before supplementation with probiotics to derive complete benefits from the intervention.


Assuntos
Atletas , Fibras na Dieta/administração & dosagem , Proteínas na Dieta/administração & dosagem , Suplementos Nutricionais , Microbioma Gastrointestinal , Probióticos/administração & dosagem , Adulto , Bactérias , Bifidobacterium bifidum , Dieta , Exercício Físico , Ácidos Graxos Voláteis , Fezes/microbiologia , Feminino , Humanos , Lactobacillus , Masculino , Adulto Jovem
2.
J Int Soc Sports Nutr ; 16(1): 21, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053143

RESUMO

BACKGROUND: Recently, gut microbiota have been studied extensively for health promotion, disease prevention, disease treatment, and exercise performance. It is recommended that athletes avoid dietary fiber and resistant starch to promote gastric emptying and reduce gastrointestinal distress during exercise, but this diet may reduce microbial diversity and compromise the health of the athlete's gut microbiota. OBJECTIVE: This study compared fecal microbiota characteristics using high-throughput sequencing among healthy sedentary men (as controls), bodybuilders, and distance runners, as well as the relationships between microbiota characteristics, body composition, and nutritional status. METHODS: Body composition was measured using DXA, and physical activity level was assessed using IPAQ. Dietary intake was analyzed with the computerized nutritional evaluation program. The DNA of fecal samples was extracted and it was sequenced for the analysis of gut microbial diversity through bioinformatics cloud platform. RESULTS: We showed that exercise type was associated with athlete diet patterns (bodybuilders: high protein, high fat, low carbohydrate, and low dietary fiber diet; distance runners: low carbohydrate and low dietary fiber diet). However, athlete type did not differ in regard to gut microbiota alpha and beta diversity. Athlete type was significantly associated with the relative abundance of gut microbiota at the genus and species level: Faecalibacterium, Sutterella, Clostridium, Haemophilus, and Eisenbergiella were the highest (p < 0.05) in bodybuilders, while Bifidobacterium and Parasutterella were the lowest (p < 0.05). At the species level, intestinal beneficial bacteria widely used as probiotics (Bifidobacterium adolescentis group, Bifidobacterium longum group, Lactobacillus sakei group) and those producing short chain fatty acids (Blautia wexlerae, Eubacterium hallii) were the lowest in bodybuilders and the highest in controls. In addition, aerobic or resistance exercise training with an unbalanced intake of macronutrients and low intake of dietary fiber led to similar diversity of gut microbiota. Specifically, daily protein intake was negatively correlated with operation taxonomic unit (r = - 0.53, p < 0.05), ACE (r = - 0.51, p < 0.05), and Shannon index (r = - 0.64, p < 0.01) in distance runners.. CONCLUSION: Results suggest that high-protein diets may have a negative impact on gut microbiota diversity for athletes, while athletes in resistance sports that carry out the high protein low carbohydrates diet demonstrate a decrease in short chain fatty acid-producing commensal bacteria.


Assuntos
Dieta , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Bactérias/classificação , Composição Corporal , Estudos de Casos e Controles , Fibras na Dieta , Proteínas na Dieta , Ácidos Graxos Voláteis , Humanos , Masculino , Esportes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...