Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 13(1): 56, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31384804

RESUMO

Background: Identification and screening of cultivars rich in bioactive phytoconstituents can be potentially useful to make nutrient-dense dishes and in medicinal formulations. In this study, we have identified, characterized and quantified caffeoylquinic acids, dicaffeoylquinic acid, dicaffeoyltartaric acid, kaempferol conjugates, quercetin malonylglucoside, sesquiterpene lactones, and cyanidin in 22 lettuce cultivars at mature and bolting stages using UPLC-PDA-Q-TOF-HDMS, UPLC, and HPLC. Results: The composition and contents of the studied metabolites and antioxidant activity varied significantly and depend on leaf color, cultivar type and stage of maturity. The main phenolic acid components of lettuce were quinic and tartaric acid derivatives, whereas kaempferol derivatives were the dominant flavonoids. The sum of the content of phenolic acids ranged from 18.3 to 54.6 mg/100 g DW and 15.5 to 54.6 mg/100 g DW, whereas the sum of the contents of flavonoids ranged from 9.2 to 25.9 mg/100 g DW and 14.9 to 83.0 mg/100 g DW in mature and bolting stage cultivars, respectively. The content of cyanidin, lactucin, lactucopicrin, and ABTS radical antioxidant activity were in the range of 0.3 to 9.7 (mature stage) and 0.5 to 10.2 mg/g DW (bolting stage), 1.8 to 41.9 (mature stage) and 9.7 to 213.0 (bolting stage) µg/g DW, 9.9 to 344.8 (mature stage) and 169.2 to 3888.2 (bolting stage) µg/g DW, and 12.1 to 29.0 (mature stage) and 15.7 to 30.3 (bolting stage) mg TE/g DW, respectively. The principal component analysis (PCA) showed that the green and red pigmented lettuce cultivars were grouped to the negative and positive sides of PC1, respectively, while the green/red pigmented cultivars were distributed throughout the four quadrants of the PCA plots with no prominent grouping. The loading plot showed that phenolic acids, flavonoids, and cyanidin are the most potent contributors to the radical scavenging activity of lettuce extracts. Conclusions: Lettuce at the bolting stage accumulate relatively high amount of sesquiterpene lactones (SLs), quercetin malonylglucoside (QMG), methylkaempferol glucuronide (MKGR), kaempferol malonylglucoside (KMG), and 3-O-caffeoylquinic acid (3-CQA) compared to the mature stage. Higher amount of phytoconstituents were found to be accumulated in the red pigmented lettuce leaves compared to the green lettuce leaves. In addition, the contents of most of the metabolites in lettuce seem to increase with age of the leaves. The presence of the two bitter SLs, lactucin and lactucopicrin, in significantly high amount in lettuce leaves at bolting stage could diminish consumer acceptance. However, alternatively, these leaves could be utilized by nutraceutical companies working to recover these compounds.

2.
Langmuir ; 34(15): 4634-4639, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29597351

RESUMO

By selective attachment of fluorescent dyes to the core-forming block, we produced patchy micelles of diblock copolymers with fluorophores localized in the micellar cores. From these patchy micelles functionalized with dyes, fluorescent supracolloidal chains in a few micrometers were polymerized by combining the patches in neighboring micelles, indicating that selective modification of the core-forming block delivered the functionality into the supracolloidal chain without altering the polymerization of patchy micelles. Thus, with the same polymerization condition, we were able to produce red-, green-, and blue-emitting supracolloidal chains by varying the fluorescent dyes attached to the core-forming block. In addition, we directly visualized individual supracolloidal chains by fluorescence confocal microscopy as well as by transmission electron microscopy.

3.
Soft Matter ; 13(38): 6756-6760, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28937168

RESUMO

Supracolloidal chains of diblock copolymer micelles were functionalized with gold and silver nanoparticles (NPs). Both NPs were independently synthesized in situ in the core of spherical micelles which were then converted to patchy micelles. With these patchy micelles as colloidal monomers, supracolloidal chains were polymerized by combining the patches of neighboring micelles. Since all micelles contained NPs, NPs were incorporated in every repeat unit of chains. In addition, a single gold NP was synthesized in the micellar core in contrast to several silver NPs so that we differentiated the chains with Au NPs from those with Ag NPs by the number of NPs in the repeat unit as well as by plasmonic bands in UV-Vis spectra.

4.
Chem Commun (Camb) ; 52(60): 9430-3, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27377162

RESUMO

We report controlled branching and eventual crosslinking in supracolloidal chains by introducing well-defined trifunctional patchy micelles. Uniform micelles having three patches were induced from core-crosslinked micelles of diblock copolymers. Three patches in the micelles served as functional groups for crosslinking as well as branching in supracolloidal polymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA