Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
mSphere ; 5(1)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024713

RESUMO

While working overnight at a swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, Nanopore sequenced 13 IAV genomes from samples we collected, and predicted in real time that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current prepandemic candidate vaccine viruses (CVVs). We developed and used a portable IAV sequencing and analysis platform called Mia (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 h after unpacking the mobile lab. Exhibition swine are a known source for zoonotic transmission of IAV to humans and pose a potential pandemic risk. Genomic analyses of IAV in swine are critical to understanding this risk, the types of viruses circulating in swine, and whether current vaccines developed for use in humans would be predicted to provide immune protection. Nanopore sequencing technology has enabled genome sequencing in the field at the source of viral outbreaks or at the bedside or pen-side of infected humans and animals. The acquired data, however, have not yet demonstrated real-time, actionable public health responses. The Mia system rapidly identified three genetically distinct swine IAV lineages from three subtypes, A(H1N1), A(H3N2), and A(H1N2). Analysis of the hemagglutinin (HA) sequences of the A(H1N2) viruses identified >30 amino acid differences between the HA1 of these viruses and the most closely related CVV. As an exercise in pandemic preparedness, all sequences were emailed to CDC collaborators who initiated the development of a synthetically derived CVV.IMPORTANCE Swine are influenza virus reservoirs that have caused outbreaks and pandemics. Genomic characterization of these viruses enables pandemic risk assessment and vaccine comparisons, though this typically occurs after a novel swine virus jumps into humans. The greatest risk occurs where large groups of swine and humans comingle. At a large swine exhibition, we used Nanopore sequencing and on-site analytics to interpret 13 swine influenza virus genomes and identified an influenza virus cluster that was genetically highly varied to currently available vaccines. As part of the National Strategy for Pandemic Preparedness exercises, the sequences were emailed to colleagues at the CDC who initiated the development of a synthetically derived vaccine designed to match the viruses at the exhibition. Subsequently, this virus caused 14 infections in humans and was the dominant U.S. variant virus in 2018.

2.
Int J Infect Dis ; 91: 169-173, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765821

RESUMO

Following the detection of the first human case of avian influenza A subtype H9N2 in 1998, more than 40 cases were diagnosed worldwide. However, the spread of the virus has been more remarkable and significant in global poultry populations, causing notable economic losses despite its low pathogenicity. Many surveillance studies and activities conducted in several countries have shown the predominance of this virus subtype. We present the case of a 14-month-old female in Oman with an A(H9N2) virus infection. This is the first human case of A(H9N2) reported from Oman and the Gulf Cooperation Countries, and Oman is the second country outside of southern and eastern Asia to report a case (cases have also been detected in Egypt). The patient had bronchial asthma and presented with a high-grade temperature and symptoms of lower respiratory tract infection that necessitated admission to a high dependency unit in a tertiary care hospital. It is of urgency that a multisector One Health approach be established to combat the threat of avian influenza at the animal-human interface. In addition to enhancements of surveillance and control in poultry, there is a need to develop screening and preventive programs for high-risk occupations.

3.
MMWR Morb Mortal Wkly Rep ; 68(46): 1076-1080, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31751326

RESUMO

CDC, the Food and Drug Administration (FDA), state and local health departments, and public health and clinical stakeholders are investigating a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI) (1). As of November 13, 2019, 49 states, the District of Columbia, and two U.S. territories (Puerto Rico and U.S. Virgin Islands) have reported 2,172 EVALI cases to CDC, including 42 (1.9%) EVALI-associated deaths. To inform EVALI surveillance, including during the 2019-20 influenza season, case report information supplied by states for hospitalized and nonhospitalized patients with EVALI were analyzed using data collected as of November 5, 2019. Among 2,016 EVALI patients with available data on hospitalization status, 1,906 (95%) were hospitalized, and 110 (5%) were not hospitalized. Demographic characteristics of hospitalized and nonhospitalized patients were similar; most were male (68% of hospitalized versus 65% of nonhospitalized patients), and most were aged <35 years (78% of hospitalized versus 74% of nonhospitalized patients). These patients also reported similar use of tetrahydrocannabinol (THC)-containing products (83% of hospitalized versus 84% of nonhospitalized patients). Given the similarity between hospitalized and nonhospitalized EVALI patients, the potential for large numbers of respiratory infections during the emerging 2019-20 influenza season, and the potential difficulty in distinguishing EVALI from respiratory infections, CDC will no longer collect national data on nonhospitalized EVALI patients. Further collection of data on nonhospitalized patients will be at the discretion of individual state, local, and territorial health departments. Candidates for outpatient management of EVALI should have normal oxygen saturation (≥95% while breathing room air), no respiratory distress, no comorbidities that might compromise pulmonary reserve, reliable access to care, strong social support systems, and should be able to ensure follow-up within 24-48 hours of initial evaluation and to seek medical care promptly if respiratory symptoms worsen. Health care providers should emphasize the importance of annual influenza vaccination for all persons aged ≥6 months, including persons who use e-cigarette, or vaping, products (2,3).


Assuntos
Surtos de Doenças , Hospitalização/estatística & dados numéricos , Lesão Pulmonar/epidemiologia , Vaping/efeitos adversos , Adolescente , Adulto , Idoso , Feminino , Humanos , Lesão Pulmonar/terapia , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
4.
MMWR Morb Mortal Wkly Rep ; 68(40): 880-884, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31600182

RESUMO

During May 19-September 28, 2019,* low levels of influenza activity were reported in the United States, with cocirculation of influenza A and influenza B viruses. In the Southern Hemisphere seasonal influenza viruses circulated widely, with influenza A(H3) predominating in many regions; however, influenza A(H1N1)pdm09 and influenza B viruses were predominant in some countries. In late September, the World Health Organization (WHO) recommended components for the 2020 Southern Hemisphere influenza vaccine and included an update to the A(H3N2) and B/Victoria-lineage components. Annual influenza vaccination is the best means for preventing influenza illness and its complications, and vaccination before influenza activity increases is optimal. Health care providers should recommend vaccination for all persons aged ≥6 months who do not have contraindications to vaccination (1).


Assuntos
Saúde Global/estatística & dados numéricos , Vacinas contra Influenza/química , Influenza Humana/epidemiologia , Vigilância da População , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Estações do Ano , Estados Unidos/epidemiologia
5.
Emerg Infect Dis ; 25(10): 1969-1972, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31287050

RESUMO

Baloxavir showed broad-spectrum in vitro replication inhibition of 4 types of influenza viruses (90% effective concentration range 1.2-98.3 nmol/L); susceptibility pattern was influenza A ˃ B ˃ C ˃ D. This drug also inhibited influenza A viruses of avian and swine origin, including viruses that have pandemic potential and those resistant to neuraminidase inhibitors.

6.
Virology ; 534: 36-44, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176062

RESUMO

Bangladesh has reported repeated outbreaks of highly pathogenic avian influenza (HPAI) A(H5) viruses in poultry since 2007. Because of the large number of live poultry markets (LPM) relative to the population density of poultry throughout the country, these markets can serve as sentinel sites for HPAI A(H5) detection. Through active LPM surveillance during June 2016-June 2017, HPAI A(H5N6) viruses along with 14 other subtypes of influenza A viruses were detected. The HPAI A(H5N6) viruses belonged to clade 2.3.4.4 and were likely introduced into Bangladesh around March 2016. Human infections with influenza clade 2.3.4.4 viruses in Bangladesh have not been identified, but the viruses had several molecular markers associated with potential human infection. Vigilant surveillance at the animal-human interface is essential to identify emerging avian influenza viruses with the potential to threaten public and animal health.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Bangladesh/epidemiologia , Surtos de Doenças , Patos , Evolução Molecular , Gansos/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia
7.
MMWR Morb Mortal Wkly Rep ; 67(42): 1169-1173, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30359341

RESUMO

On September 17, 2017, the Maryland Department of Agriculture (MDA) was notified by fair and 4-H officials of ill swine at agricultural fair A, held September 14-17. That day, investigation of the 107 swine at fair A revealed five swine with fever and signs of upper respiratory tract illness. All five respiratory specimens collected from these swine tested positive for influenza A virus at the MDA Animal Health Laboratory, and influenza A(H3N2) virus was confirmed in all specimens by the U.S. Department of Agriculture National Veterinary Services Laboratory (NVSL). On September 18, MDA was notified by fair and 4-H officials that swine exhibitors were also ill. MDA alerted the Maryland Department of Health (MDH). A joint investigation with MDH and the local health department was started and later broadened to Maryland agricultural fairs B (September 13-17) and C (September 15-23). In total, 76 persons underwent testing for variant influenza, and influenza A(H3N2) variant (A(H3N2)v) virus infection was identified in 40 patients with exposure to swine at these fairs (Figure), including 30 (75%) who had more than one characteristic putting them at high risk for serious influenza complications; 24 (60%) of these were children aged <5 years. Twenty-six (65%) patients reported direct contact with swine (i.e., touching swine or swine enclosure), but 14 (35%) reported only indirect contact (e.g., walking through a swine barn). Two children required hospitalization; all patients recovered. This outbreak highlights the risk, particularly among children, for contracting variant influenza virus at agricultural fairs after direct or indirect swine contact. Publicizing CDC's recommendation that persons at high risk for serious influenza complications avoid pigs and swine barns might help prevent future variant influenza outbreaks among vulnerable groups (1).


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Adolescente , Adulto , Idoso , Agricultura , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Influenza Humana/virologia , Masculino , Maryland/epidemiologia , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/transmissão , Adulto Jovem , Zoonoses
8.
MMWR Morb Mortal Wkly Rep ; 67(42): 1178-1185, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30359347

RESUMO

During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged ≥6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections† were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine.§.


Assuntos
Surtos de Doenças , Saúde Global/estatística & dados numéricos , Influenza Humana/epidemiologia , Vigilância da População , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/química , Influenza Humana/virologia , Estações do Ano , Estados Unidos/epidemiologia
9.
Emerg Microbes Infect ; 7(1): 147, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131494

RESUMO

The highly pathogenic avian influenza (HPAI) A(H5N1) virus is endemic in Indonesian poultry and has caused sporadic human infection in Indonesia since 2005. Surveillance of H5N1 viruses in live bird markets (LBMs) during 2012 and 2013 was carried out to provide epidemiologic and virologic information regarding viral circulation and the risk of human exposure. Real-time RT-PCR of avian cloacal swabs and environmental samples revealed influenza A-positive specimens, which were then subjected to virus isolation and genomic sequencing. Genetic analysis of specimens collected at multiple LBMs in Indonesia identified both low pathogenicity avian influenza (LPAI) A(H3N8) and HPAI A(H5N1) viruses belonging to clade 2.1.3.2a. Comparison of internal gene segments among the LPAI and HPAI viruses revealed that the latter had acquired the PB2, PB1, and NS genes from LPAI progenitors and other viruses containing a wild type (wt) genomic constellation. Comparison of murine infectivity of the LPAI A(H3N8), wt HPAI A(H5N1) and reassortant HPAI A(H5N1) viruses showed that the acquisition of LPAI internal genes attenuated the reassortant HPAI virus, producing a mouse infectivity/virulence phenotype comparable to that of the LPAI virus. Comparison of molecular markers in each viral gene segment suggested that mutations in PB2 and NS1 may facilitate attenuation. The discovery of an attenuated HPAI A(H5N1) virus in mice that resulted from reassortment may have implications for the capability of these viruses to transmit and cause disease. In addition, surveillance suggests that LBMs in Indonesia may play a role in the generation of reassortant A(H5) viruses and should be monitored.


Assuntos
Vírus da Influenza A Subtipo H3N8/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Recombinação Genética , Animais , Galinhas , Criança , Pré-Escolar , Feminino , Humanos , Indonésia , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Vírus da Influenza A Subtipo H3N8/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Virulência
10.
MMWR Morb Mortal Wkly Rep ; 67(22): 634-642, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29879098

RESUMO

The United States 2017-18 influenza season (October 1, 2017-May 19, 2018) was a high severity season with high levels of outpatient clinic and emergency department visits for influenza-like illness (ILI), high influenza-related hospitalization rates, and elevated and geographically widespread influenza activity across the country for an extended period. Nationally, ILI activity began increasing in November, reaching an extended period of high activity during January-February, and remaining elevated through March. Influenza A(H3N2) viruses predominated through February and were predominant overall for the season; influenza B viruses predominated from March onward. This report summarizes U.S. influenza activity* during October 1, 2017-May 19, 2018.†.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Mortalidade da Criança , Pré-Escolar , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vacinas contra Influenza/química , Influenza Humana/mortalidade , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/mortalidade , Estações do Ano , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Adulto Jovem
11.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848587

RESUMO

While several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in both in vitro and in vivo in mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCE Swine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use both in vitro and in vivo models to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.


Assuntos
Transmissão de Doença Infecciosa , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/virologia , Replicação Viral , Animais , Linhagem Celular , Modelos Animais de Doenças , Furões , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/virologia , Suínos , Estados Unidos , Carga Viral
12.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540597

RESUMO

Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015.IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To understand the genetic and virologic characteristics of a virus (A/Ohio/09/2015) associated with a fatal infection and a virus associated with a nonfatal infection (A/Iowa/39/2015), we performed genome sequence analysis, antigenic testing, and pathogenicity and transmission studies in a ferret model. Reverse genetics was employed to identify a single antigenic site substitution (HA G155E) responsible for antigenic variation of A/Ohio/09/2015 compared to related classical swine influenza A(H1N1) viruses. Ferrets with preexisting immunity to the pandemic A(H1N1) virus were challenged with A/Ohio/09/2015, demonstrating decreased protection. These data illustrate the potential for currently circulating swine influenza viruses to infect and cause illness in humans with preexisting immunity to H1N1 pandemic 2009 viruses and a need for ongoing risk assessment and development of candidate vaccine viruses for improved pandemic preparedness.


Assuntos
Variação Antigênica/genética , Furões/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Animais , Variação Antigênica/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Suínos/virologia , Doenças dos Suínos/virologia
13.
MMWR Morb Mortal Wkly Rep ; 67(6): 169-179, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29447145

RESUMO

Influenza activity in the United States began to increase in early November 2017 and rose sharply from December through February 3, 2018; elevated influenza activity is expected to continue for several more weeks. Influenza A viruses have been most commonly identified, with influenza A(H3N2) viruses predominating, but influenza A(H1N1)pdm09 and influenza B viruses were also reported. This report summarizes U.S. influenza activity* during October 1, 2017-February 3, 2018,† and updates the previous summary (1).


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Assistência Ambulatorial/estatística & dados numéricos , Antivirais/farmacologia , Criança , Mortalidade da Criança , Pré-Escolar , Farmacorresistência Viral , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Influenza Humana/mortalidade , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia/mortalidade , Gravidez , Estações do Ano , Estados Unidos/epidemiologia , Adulto Jovem
14.
MMWR Morb Mortal Wkly Rep ; 66(48): 1318-1326, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216030

RESUMO

Influenza activity in the United States was low during October 2017, but has been increasing since the beginning of November. Influenza A viruses have been most commonly identified, with influenza A(H3N2) viruses predominating. Several influenza activity indicators were higher than is typically seen for this time of year. The majority of influenza viruses characterized during this period were genetically or antigenically similar to the 2017-18 Northern Hemisphere cell-grown vaccine reference viruses. These data indicate that currently circulating viruses have not undergone significant antigenic drift; however, circulating A(H3N2) viruses are antigenically less similar to egg-grown A(H3N2) viruses used for producing the majority of influenza vaccines in the United States. It is difficult to predict which influenza viruses will predominate in the 2017-18 influenza season; however, in recent past seasons in which A(H3N2) viruses predominated, hospitalizations and deaths were more common, and the effectiveness of the vaccine was lower. Annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Multiple influenza vaccines are approved and recommended for use during the 2017-18 season, and vaccination should continue to be offered as long as influenza viruses are circulating and unexpired vaccine is available. This report summarizes U.S. influenza activity* during October 1-November 25, 2017 (surveillance weeks 40-47).†.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Mortalidade da Criança , Pré-Escolar , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Influenza Humana/mortalidade , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/epidemiologia , Pneumonia/mortalidade , Estados Unidos/epidemiologia , Adulto Jovem
15.
Emerg Infect Dis ; 23(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148400

RESUMO

An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.


Assuntos
Doenças do Gato/epidemiologia , Surtos de Doenças , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N2/genética , Influenza Aviária/epidemiologia , Zoonoses/epidemiologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sítios de Ligação , Aves , Doenças do Gato/transmissão , Doenças do Gato/virologia , Gatos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Abrigo para Animais , Humanos , Vírus da Influenza A Subtipo H7N2/classificação , Vírus da Influenza A Subtipo H7N2/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Modelos Moleculares , New York/epidemiologia , Polissacarídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Médicos Veterinários , Zoonoses/transmissão , Zoonoses/virologia
16.
MMWR Morb Mortal Wkly Rep ; 66(35): 928-932, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28880856

RESUMO

Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses (CVV) were produced in 2013 that have been used to make vaccines against Asian H7N9 viruses circulating at that time. CDC is working with partners to enhance surveillance for Asian H7N9 viruses in humans and poultry, to improve laboratory capability to detect and characterize H7N9 viruses, and to develop, test and distribute new CVV that could be used for vaccine production if a vaccine is needed.


Assuntos
Epidemias/estatística & dados numéricos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vigilância da População , Animais , China/epidemiologia , Humanos , Influenza Aviária/transmissão , Influenza Aviária/virologia , Pandemias/prevenção & controle , Aves Domésticas
17.
J Infect Dis ; 216(suppl_4): S499-S507, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934454

RESUMO

Background: A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since then, this CIV has caused thousands of infections in dogs in multiple states. Methods: In this study, genetic and antigenic properties of the new CIV were evaluated. In addition, structural and glycan array binding features of the recombinant hemagglutinin were determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in animal models were also assessed. Results: A(H3N2) CIVs maintained molecular and antigenic features related to low pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The structural and glycan array binding profile confirmed these findings and revealed avian-like receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice and ferrets, and the virus was inefficiently transmitted among cohoused ferrets. Conclusions: Further adaptation is needed for A(H3N2) CIVs to present a likely threat to humans. However, the potential for coinfection of dogs and possible reassortment of human and other animal influenza A viruses presents an ongoing risk to public health.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Animais , Células Cultivadas , Doenças do Cão/virologia , Cães/virologia , Células Epiteliais/virologia , Furões/virologia , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Camundongos , Neuraminidase/genética , Neuraminidase/metabolismo , Filogenia , Conformação Proteica , Estados Unidos/epidemiologia , Replicação Viral
18.
J Infect Dis ; 216(suppl_4): S529-S538, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934457

RESUMO

Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance.


Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Sequência de Aminoácidos , Animais , Farmacorresistência Viral Múltipla , Genótipo , Técnicas de Genotipagem , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/tratamento farmacológico , Influenza Aviária/transmissão , Influenza Humana/tratamento farmacológico , Pandemias , Filogenia , Aves Domésticas/virologia , RNA Viral/genética , Análise de Sequência de RNA , Análise Espaço-Temporal , Vietnã/epidemiologia , Proteínas Virais/genética
19.
Emerg Infect Dis ; 23(9): 1551-1555, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820376
20.
J Vet Sci ; 18(S1): 333-341, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28385004

RESUMO

The aim of this study was to investigate the molecular characteristics and to conduct a comparative genomic analysis of Mycobacterium (M.) bovis strain 1595 isolated from a native Korean cow. Molecular typing showed that M. bovis 1595 has spoligotype SB0140 with mycobacterial interspersed repetitive units-variable number of tandem repeats typing of 4-2-5-3-2-7-5-5-4-3-4-3-4-3, representing the most common type of M. bovis in Korea. The complete genome sequence of strain 1595 was determined by single-molecule real-time technology, which showed a genome of 4351712 bp in size with a 65.64% G + C content and 4358 protein-coding genes. Comparative genomic analysis with the genomes of Mycobacterium tuberculosis complex strains revealed that all genomes are similar in size and G + C content. Phylogenetic analysis revealed all strains were within a 0.1% average nucleotide identity value, and MUMmer analysis illustrated that all genomes showed positive collinearity with strain 1595. A sequence comparison based on BLASTP analysis showed that M. bovis AF2122/97 was the strain with the greatest number of completely matched proteins to M. bovis 1595. This genome sequence analysis will serve as a valuable reference for improving understanding of the virulence and epidemiologic traits among M. bovis isolates in Korea.


Assuntos
Mycobacterium bovis/genética , Tuberculose Bovina/microbiologia , Animais , Bovinos/microbiologia , Genoma Bacteriano/genética , Repetições Minissatélites/genética , República da Coreia , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA