Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0256633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34543290

RESUMO

Habitat loss from land-use change is one of the top causes of declines in wildlife species of concern. As such, it is critical to assess and reassess habitat suitability as land cover and anthropogenic features change for both monitoring and developing current information to inform management decisions. However, there are obstacles that must be overcome to develop consistent assessments through time. A range-wide lek habitat suitability model for the lesser prairie-chicken (Tympanuchus pallidicinctus), currently under review by the U. S. Fish and Wildlife Service for potential listing under the Endangered Species Act, was published in 2016. This model was based on lek data from 2002 to 2012, land cover data ranging from 2001 to 2013, and anthropogenic features from circa 2011, and has been used to help guide lesser prairie-chicken management and anthropogenic development actions. We created a second iteration model based on new lek surveys (2015 to 2019) and updated predictors (2016 land cover and cleaned/updated anthropogenic data) to evaluate changes in lek suitability and to quantify current range-wide habitat suitability. Only three of 11 predictor variables were directly comparable between the iterations, making it difficult to directly assess what predicted changes resulted from changes in model inputs versus actual landscape change. The second iteration model showed a similar positive relationship with land cover and negative relationship with anthropogenic features to the first iteration, but exhibited more variation among candidate models. Range-wide, more suitable habitat was predicted in the second iteration. The Shinnery Oak Ecoregion, however, exhibited a loss in predicted suitable habitat that could be due to predictor source changes. Iterated models such as this are important to ensure current information is being used in conservation and development decisions.


Assuntos
Galinhas/fisiologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Galliformes/fisiologia , Animais , Ecossistema , Pradaria , Humanos , Codorniz/fisiologia
2.
Sci Rep ; 10(1): 19069, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149184

RESUMO

Ecological forecasts of the extent and impacts of invasive species can inform conservation management decisions. Such forecasts are hampered by ecological uncertainties associated with non-analog conditions resulting from the introduction of an invader to an ecosystem. We developed a state-and-transition simulation model tied to a fire behavior model to simulate the spread of buffelgrass (Cenchrus ciliaris) in Saguaro National Park, AZ, USA over a 30-year period. The simulation models forecast the potential extent and impact of a buffelgrass invasion including size and frequency of fire events and displacement of saguaro cacti and other native species. Using simulation models allowed us to evaluate how model uncertainties affected forecasted landscape outcomes. We compared scenarios covering a range of parameter uncertainties including model initialization (landscape susceptibility to invasion) and expert-identified ecological uncertainties (buffelgrass patch infill rates and precipitation). Our simulations showed substantial differences in the amount of buffelgrass on the landscape and the size and frequency of fires for dry years with slow patch infill scenarios compared to wet years with fast patch infill scenarios. We identified uncertainty in buffelgrass patch infill rates as a key area for research to improve forecasts. Our approach could be used to investigate novel processes in other invaded systems.


Assuntos
Cenchrus/fisiologia , Simulação por Computador , Espécies Introduzidas/estatística & dados numéricos , Biomassa , Incerteza , Tempo (Meteorologia) , Incêndios Florestais/estatística & dados numéricos
3.
PLoS One ; 15(3): e0229253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150554

RESUMO

Predictions of habitat suitability for invasive plant species can guide risk assessments at regional and national scales and inform early detection and rapid-response strategies at local scales. We present a general approach to invasive species modeling and mapping that meets objectives at multiple scales. Our methodology is designed to balance trade-offs between developing highly customized models for few species versus fitting non-specific and generic models for numerous species. We developed a national library of environmental variables known to physiologically limit plant distributions and relied on human input based on natural history knowledge to further narrow the variable set for each species before developing habitat suitability models. To ensure efficiency, we used largely automated modeling approaches and human input only at key junctures. We explore and present uncertainty by using two alternative sources of background samples, including five statistical algorithms, and constructing model ensembles. We demonstrate the use and efficiency of the Software for Assisted Habitat Modeling [SAHM 2.1.2], a package in VisTrails, which performs the majority of the modeling analyses. Our workflow includes solicitation of expert feedback on model outputs such as spatial prediction results and variable response curves, and iterative improvement based on new data availability and directed field validation of initial model results. We highlight the utility of the models for decision-making at regional and local scales with case studies of two plant species that invade natural areas: fountain grass (Pennisetum setaceum) and goutweed (Aegopodium podagraria). By balancing model automation with human intervention, we can efficiently provide land managers with mapped predicted distributions for multiple invasive species to inform decisions across spatial scales.


Assuntos
Apiaceae/crescimento & desenvolvimento , Espécies Introduzidas , Pennisetum/crescimento & desenvolvimento , Algoritmos , Automação , Conservação dos Recursos Naturais , Técnicas de Apoio para a Decisão , Humanos , Modelos Estatísticos , Medição de Risco , Fluxo de Trabalho
4.
Risk Anal ; 39(5): 1169-1191, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30428498

RESUMO

Aquatic non-native invasive species are commonly traded in the worldwide water garden and aquarium markets, and some of these species pose major threats to the economy, the environment, and human health. Understanding the potential suitable habitat for these species at a global scale and at regional scales can inform risk assessments and predict future potential establishment. Typically, global habitat suitability models are fit for freshwater species with only climate variables, which provides little information about suitable terrestrial conditions for aquatic species. Remotely sensed data including topography and land cover data have the potential to improve our understanding of suitable habitat for aquatic species. In this study, we fit species distribution models using five different model algorithms for three non-native aquatic invasive species with bioclimatic, topographic, and remotely sensed covariates to evaluate potential suitable habitat beyond simple climate matches. The species examined included a frog (Xenopus laevis), toad (Bombina orientalis), and snail (Pomacea spp.). Using a unique modeling approach for each species including background point selection based on known established populations resulted in robust ensemble habitat suitability models. All models for all species had test area under the receiver operating characteristic curve values greater than 0.70 and percent correctly classified values greater than 0.65. Importantly, we employed multivariate environmental similarity surface maps to evaluate potential extrapolation beyond observed conditions when applying models globally. These global models provide necessary forecasts of where these aquatic invasive species have the potential for establishment outside their native range, a key component in risk analyses.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Jardinagem/métodos , Jardins , Espécies Introduzidas , Medição de Risco/métodos , Algoritmos , Animais , Anuros , Clima , Mudança Climática , Água Doce , Modelos Teóricos , Análise Multivariada , Caramujos , Água , Xenopus
5.
Sci Rep ; 8(1): 10193, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976961

RESUMO

Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.) - Salvator merianae (Argentine black and white tegu) and Tupinambis teguixin sensu lato (gold tegu) - and a third has been recorded there- S. rufescens (red tegu). We built species distribution models (SDMs) using 5 approaches (logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy) based on data from the native ranges. We then projected these models to North America to develop hypotheses for potential tegu distributions. Our results suggest that much of the southern United States and northern México probably contains suitable habitat for one or more of these tegu species. Salvator rufescens had higher habitat suitability in semi-arid areas, whereas S. merianae and T. teguixin had higher habitat suitability in more mesic areas. We propose that Florida is not the only state where these taxa could become established, and that early detection and rapid response programs targeting tegu lizards in potentially suitable habitat elsewhere in North America could help prevent establishment and abate negative impacts on native ecosystems.


Assuntos
Distribuição Animal , Monitorização de Parâmetros Ecológicos/métodos , Espécies Introduzidas , Lagartos/fisiologia , Modelos Biológicos , Animais , Florida , Florestas , México
6.
Proc Natl Acad Sci U S A ; 115(7): 1424-1432, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382745

RESUMO

Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.


Assuntos
Ecologia/educação , Ecologia/métodos , Teorema de Bayes , Mudança Climática , Ecologia/tendências , Ecossistema , Previsões , Humanos , Modelos Teóricos
8.
Glob Chang Biol ; 23(7): 2537-2553, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173628

RESUMO

Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.


Assuntos
Mudança Climática , Ecossistema , Clima , Previsões
9.
J Vis Exp ; (116)2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27768080

RESUMO

Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.


Assuntos
Espécies Introduzidas , Tecnologia de Sensoriamento Remoto , Tamaricaceae , Ecossistema , Modelos Teóricos , Software
10.
J Med Entomol ; 53(5): 1176-1191, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27282813

RESUMO

In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has changed modestly while, in contrast, the I. scapularis range has expanded substantially, which likely contributes to the concurrent expansion in the distribution of human Lyme disease cases in the Northeastern, North-Central and Mid-Atlantic states. Identifying counties that contain suitable habitat for these ticks that have not yet reported established vector populations can aid in targeting limited vector surveillance resources to areas where tick invasion and potential human risk are likely to occur. We used county-level vector distribution information and ensemble modeling to map the potential distribution of I. scapularis and I. pacificus in the contiguous United States as a function of climate, elevation, and forest cover. Results show that I. pacificus is currently present within much of the range classified by our model as suitable for establishment. In contrast, environmental conditions are suitable for I. scapularis to continue expanding its range into northwestern Minnesota, central and northern Michigan, within the Ohio River Valley, and inland from the southeastern and Gulf coasts. Overall, our ensemble models show suitable habitat for I. scapularis in 441 eastern counties and for I. pacificus in 11 western counties where surveillance records have not yet supported classification of the counties as established.

11.
Environ Manage ; 58(1): 144-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27003689

RESUMO

Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.


Assuntos
Conservação dos Recursos Naturais/métodos , Hydrocharitaceae/crescimento & desenvolvimento , Espécies Introduzidas/tendências , Modelos Teóricos , Salmão/crescimento & desenvolvimento , Salmonidae/crescimento & desenvolvimento , Alaska , Animais , Mudança Climática , Ecossistema , Água Doce , Humanos
12.
Am J Trop Med Hyg ; 93(4): 875-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26217042

RESUMO

The Lone star tick (Amblyomma americanum L.) is the primary vector for pathogens of significant public health importance in North America, yet relatively little is known about its current and potential future distribution. Building on a published summary of tick collection records, we used an ensemble modeling approach to predict the present-day and future distribution of climatically suitable habitat for establishment of the Lone star tick within the continental United States. Of the nine climatic predictor variables included in our five present-day models, average vapor pressure in July was by far the most important determinant of suitable habitat. The present-day ensemble model predicted an essentially contiguous distribution of suitable habitat extending to the Atlantic coast east of the 100th western meridian and south of the 40th northern parallel, but excluding a high elevation region associated with the Appalachian Mountains. Future ensemble predictions for 2061-2080 forecasted a stable western range limit, northward expansion of suitable habitat into the Upper Midwest and western Pennsylvania, and range contraction along portions of the Gulf coast and the lower Mississippi river valley. These findings are informative for raising awareness of A. americanum-transmitted pathogens in areas where the Lone Star tick has recently or may become established.


Assuntos
Ixodidae , Animais , Clima , Demografia , Previsões , Modelos Teóricos , Estados Unidos
13.
PLoS One ; 9(11): e112854, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393396

RESUMO

We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC  = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC  = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.


Assuntos
Espécies Introduzidas , Prosopis/fisiologia , Etiópia
14.
Environ Manage ; 52(4): 929-38, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959261

RESUMO

Habitat suitability maps are commonly created by modeling a species' environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk (Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.


Assuntos
Espécies Introduzidas , Modelos Teóricos , Tamaricaceae , Sudoeste dos Estados Unidos
15.
Ecol Appl ; 23(1): 60-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23495636

RESUMO

Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less sampling effort (chi2 = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts.


Assuntos
Centaurea/fisiologia , Ecossistema , Espécies Introduzidas , Modelos Biológicos , Pastinaca/fisiologia , Conservação dos Recursos Naturais , Demografia , Monitoramento Ambiental , Estados Unidos
16.
Environ Manage ; 47(5): 926-36, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21400221

RESUMO

Alternative energy development is increasing, potentially leading to negative impacts on wildlife populations already stressed by other factors. Resource managers require a scientifically based methodology to balance energy development and species conservation, so we investigated modeling habitat suitability using Maximum Entropy to develop maps that could be used with other information to help site energy developments. We selected one species of concern, the Lesser Prairie-Chicken (LPCH; Tympanuchus pallidicinctus) found on the southern Great Plains of North America, as our case study. LPCH populations have been declining and are potentially further impacted by energy development. We used LPCH lek locations in the state of Kansas along with several environmental and anthropogenic parameters to develop models that predict the probability of lek occurrence across the landscape. The models all performed well as indicated by the high test area under the curve (AUC) scores (all >0.9). The inclusion of anthropogenic parameters in models resulted in slightly better performance based on AUC values, indicating that anthropogenic features may impact LPCH lek habitat suitability. Given the positive model results, this methodology may provide additional guidance in designing future survey protocols, as well as siting of energy development in areas of marginal or unsuitable habitat for species of concern. This technique could help to standardize and quantify the impacts various developments have upon at-risk species.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Animais , Ecossistema , Galliformes
17.
PLoS One ; 6(2): e14670, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21347411

RESUMO

BACKGROUND: Species distribution models are often used to characterize a species' native range climate, so as to identify sites elsewhere in the world that may be climatically similar and therefore at risk of invasion by the species. This endeavor provoked intense public controversy over recent attempts to model areas at risk of invasion by the Indian Python (Python molurus). We evaluated a number of MaxEnt models on this species to assess MaxEnt's utility for vertebrate climate matching. METHODOLOGY/PRINCIPAL FINDINGS: Overall, we found MaxEnt models to be very sensitive to modeling choices and selection of input localities and background regions. As used, MaxEnt invoked minimal protections against data dredging, multi-collinearity of explanatory axes, and overfitting. As used, MaxEnt endeavored to identify a single ideal climate, whereas different climatic considerations may determine range boundaries in different parts of the native range. MaxEnt was extremely sensitive to both the choice of background locations for the python, and to selection of presence points: inclusion of just four erroneous localities was responsible for Pyron et al.'s conclusion that no additional portions of the U.S. mainland were at risk of python invasion. When used with default settings, MaxEnt overfit the realized climate space, identifying models with about 60 parameters, about five times the number of parameters justifiable when optimized on the basis of Akaike's Information Criterion. CONCLUSIONS/SIGNIFICANCE: When used with default settings, MaxEnt may not be an appropriate vehicle for identifying all sites at risk of colonization. Model instability and dearth of protections against overfitting, multi-collinearity, and data dredging may combine with a failure to distinguish fundamental from realized climate envelopes to produce models of limited utility. A priori identification of biologically realistic model structure, combined with computational protections against these statistical problems, may produce more robust models of invasion risk.


Assuntos
Clima , Ecossistema , Espécies Introduzidas/estatística & dados numéricos , Modelos Teóricos , Animais , Boidae/fisiologia , Internacionalidade
18.
Front Earth Sci ; 5(2): 111-119, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-32215222

RESUMO

Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search "deep" web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.

19.
Risk Anal ; 30(2): 224-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20136746

RESUMO

Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.


Assuntos
Desenvolvimento Vegetal , Alaska , California , Ecossistema , Meio Ambiente , Modelos Logísticos , Modelos Biológicos , Folhas de Planta , Árvores , Wyoming
20.
Ecol Lett ; 11(4): 313-22; discussion 322-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18248448

RESUMO

Plant species assemblages, communities or regional floras might be termed 'saturated' when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA where colonization (i.e. invasion by exotic species) exceeds extirpation by roughly a 24 to 1 margin. We report an alarming temporal trend in plant invasions in the Pacific Northwest over the past 100 years whereby counties highest in native species richness appear increasingly invaded over time. Despite the possibility of some increased awareness and reporting of native and exotic plant species in recent decades, historical records show a significant, consistent long-term increase in exotic species (number and frequency) at county, state and regional scales in the Pacific Northwest. Here, as in other regions of the country, colonization rates by exotic species are high and extirpation rates are negligible. The rates of species accumulation in space in multi-scale vegetation plots may provide some clues to the mechanisms of the invasion process from local to national scales.


Assuntos
Biodiversidade , Plantas , Geografia , Noroeste dos Estados Unidos , Sudoeste dos Estados Unidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...