Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Am J Hum Genet ; 107(5): 932-941, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108757

RESUMO

Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.

2.
Circulation ; 142(17): 1633-1646, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32981348

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability. METHODS: We performed a genome-wide association study in the Million Veteran Program testing ≈18 million DNA sequence variants with AAA (7642 cases and 172 172 controls) in veterans of European ancestry with independent replication in up to 4972 cases and 99 858 controls. We then used mendelian randomization to examine the causal effects of blood pressure on AAA. We examined the association of AAA risk variants with aneurysms in the lower extremity, cerebral, and iliac arterial beds, and derived a genome-wide polygenic risk score (PRS) to identify a subset of the population at greater risk for disease. RESULTS: Through a genome-wide association study, we identified 14 novel loci, bringing the total number of known significant AAA loci to 24. In our mendelian randomization analysis, we demonstrate that a genetic increase of 10 mm Hg in diastolic blood pressure (odds ratio, 1.43 [95% CI, 1.24-1.66]; P=1.6×10-6), as opposed to systolic blood pressure (odds ratio, 1.06 [95% CI, 0.97-1.15]; P=0.2), likely has a causal relationship with AAA development. We observed that 19 of 24 AAA risk variants associate with aneurysms in at least 1 other vascular territory. A 29-variant PRS was strongly associated with AAA (odds ratioPRS, 1.26 [95% CI, 1.18-1.36]; PPRS=2.7×10-11 per SD increase in PRS), independent of family history and smoking risk factors (odds ratioPRS+family history+smoking, 1.24 [95% CI, 1.14-1.35]; PPRS=1.27×10-6). Using this PRS, we identified a subset of the population with AAA prevalence greater than that observed in screening trials informing current guidelines. CONCLUSIONS: We identify novel AAA genetic associations with therapeutic implications and identify a subset of the population at significantly increased genetic risk of AAA independent of family history. Our data suggest that extending current screening guidelines to include testing to identify those with high polygenic AAA risk, once the cost of genotyping becomes comparable with that of screening ultrasound, would significantly increase the yield of current screening at reasonable cost.

3.
Genet Epidemiol ; 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964493

RESUMO

Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.

4.
Int J Obes (Lond) ; 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32952152

RESUMO

BACKGROUND/OBJECTIVES: Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of MC4R variants in large cohort of different ancestries, we evaluated the MC4R coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus. SUBJECTS/METHODS: The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping. RESULTS: Targeted sequencing data of MC4R revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m2. In GWAS analysis, in addition to known risk haplotype upstream of MC4R (best variant rs6567160 (P = 5.36 × 10-25, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (P = 6.23 × 10-08, Beta = -0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI. CONCLUSIONS: MC4R screening in a large eMERGE cohort confirmed many previous findings, extend the MC4R pleotropic effects, and discovered additional MC4R rare alleles that probably contribute to obesity.

5.
Circ Res ; 127(9): 1198-1210, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819213

RESUMO

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.

6.
Stroke Vasc Neurol ; 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792458

RESUMO

BACKGROUND AND PURPOSE: While extracranial carotid artery stenosis is more common among Caucasians and intracranial artery stenosis is more common among Asians, the differences in atherosclerotic plaque characteristics have not yet been extensively examined. We sought to investigate plaque location and characteristics within extracranial carotid and intracranial arteries in symptomatic Caucasians and Chinese using vessel wall MRI. METHODS: Subjects with recent anterior circulation ischaemic stroke were recruited and imaged at two sites in the USA and China using similar protocols. Both extracranial carotid and intracranial arteries were reviewed to determine plaque location and characteristics. RESULTS: The prevalence of extracranial carotid plaque in Caucasians and Chinese was 73.1% and 49.1%, respectively (p=0.055). Prevalence of intracranial plaque was 38.5% and 69.1% in Caucasians and Chinese, respectively (p=0.02). Furthermore, 42% of Caucasians and 16% of Chinese had high-risk plaque (HRP) features (intraplaque haemorrhage, luminal surface disruption) in the extracranial carotid artery (p=0.03). The prevalence of HRP features in intracranial arteries was not significantly different between the two cohorts (4% vs 11%; p=0.42). CONCLUSIONS: Differences in the location and characteristics of cerebrovascular atherosclerosis were identified by vessel wall MRI in US Caucasian and Chinese subjects with recent anterior circulation ischaemic stroke. Extracranial carotid plaques with HRP features were more common in Caucasians. Intracranial plaques were more common in Chinese subjects, but no significant difference between the two cohorts in intracranial HRP prevalence was found. Larger studies using vessel wall imaging to investigate racial differences in cerebrovascular disease may inform underlying mechanisms of HRP development and may ultimately help guide appropriate therapy.

7.
Transl Behav Med ; 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32579152

RESUMO

Successful translation of genetic information into patient-centered care and improved outcomes depends, at least in part, on patients' genetic knowledge. Although genetic knowledge is believed to be an important facilitator of familial communication of genetic risk information, empirical evidence of this association is lacking. We examined whether genetic knowledge was related to frequency of current familial communication about colorectal cancer and polyp (CRCP) risk, and future intention to share CRCP-related genomic test results with family members in a clinical sample of patients. We recruited 189 patients eligible for clinical CRCP sequencing to the eMERGE III FamilyTalk randomized controlled trial and surveyed them about genetic knowledge and familial communication at baseline. Participants were primarily Caucasian, 47% male, average age of 68 years, mostly well educated, and with high-income levels. Genetic knowledge was positively associated with future-intended familial communication of genetic information (odds ratio = 1.11, 95% confidence interval: 1.02-1.23), but not associated with current communication of CRC risk (ß = 0.01, p = .58). Greater current communication of CRC risk was associated with better family functioning (ß = 0.04, p = 8.2e-5). Participants' genetic knowledge in this study was minimally associated with their intended familial communication of genetic information. Although participants have good intentions of communication, family-level factors may hinder actual follow through of these intentions. Continued focus on improving proband's genetic knowledge coupled with interventions to overcome family-level barriers to communication may be needed to improve familial communication rates.

8.
Am J Hum Genet ; 106(5): 707-716, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386537

RESUMO

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.


Assuntos
Afro-Americanos/genética , Doença das Coronárias/genética , Grupo com Ancestrais do Continente Europeu/genética , Predisposição Genética para Doença , Hispano-Americanos/genética , Herança Multifatorial/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances
9.
Sci Rep ; 10(1): 7561, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372017

RESUMO

Left ventricular (LV) mass is a prognostic biomarker for incident heart disease and all-cause mortality. Large-scale genome-wide association studies have identified few SNPs associated with LV mass. We hypothesized that a polygenic discovery approach using LV mass measurements made in a clinical population would identify risk factors and diseases associated with adverse LV remodeling. We developed a polygenic single nucleotide polymorphism-based predictor of LV mass in 7,601 individuals with LV mass measurements made during routine clinical care. We tested for associations between this predictor and 894 clinical diagnoses measured in 58,838 unrelated genotyped individuals. There were 29 clinical phenotypes associated with the LV mass genetic predictor at FDR q < 0.05. Genetically predicted higher LV mass was associated with modifiable cardiac risk factors, diagnoses related to organ dysfunction and conditions associated with abnormal cardiac structure including heart failure and atrial fibrillation. Secondary analyses using polygenic predictors confirmed a significant association between higher LV mass and body mass index and, in men, associations with coronary atherosclerosis and systolic blood pressure. In summary, these analyses show that LV mass-associated genetic variability associates with diagnoses of cardiac diseases and with modifiable risk factors which contribute to these diseases.

10.
Am J Obstet Gynecol ; 223(4): 559.e1-559.e21, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32289280

RESUMO

BACKGROUND: Polycystic ovary syndrome is the most common endocrine disorder affecting women of reproductive age. A number of criteria have been developed for clinical diagnosis of polycystic ovary syndrome, with the Rotterdam criteria being the most inclusive. Evidence suggests that polycystic ovary syndrome is significantly heritable, and previous studies have identified genetic variants associated with polycystic ovary syndrome diagnosed using different criteria. The widely adopted electronic health record system provides an opportunity to identify patients with polycystic ovary syndrome using the Rotterdam criteria for genetic studies. OBJECTIVE: To identify novel associated genetic variants under the same phenotype definition, we extracted polycystic ovary syndrome cases and unaffected controls based on the Rotterdam criteria from the electronic health records and performed a discovery-validation genome-wide association study. STUDY DESIGN: We developed a polycystic ovary syndrome phenotyping algorithm on the basis of the Rotterdam criteria and applied it to 3 electronic health record-linked biobanks to identify cases and controls for genetic study. In the discovery phase, we performed an individual genome-wide association study using the Geisinger MyCode and the Electronic Medical Records and Genomics cohorts, which were then meta-analyzed. We attempted validation of the significant association loci (P<1×10-6) in the BioVU cohort. All association analyses used logistic regression, assuming an additive genetic model, and adjusted for principal components to control for population stratification. An inverse-variance fixed-effect model was adopted for meta-analysis. In addition, we examined the top variants to evaluate their associations with each criterion in the phenotyping algorithm. We used the STRING database to characterize protein-protein interaction network. RESULTS: Using the same algorithm based on the Rotterdam criteria, we identified 2995 patients with polycystic ovary syndrome and 53,599 population controls in total (2742 cases and 51,438 controls from the discovery phase; 253 cases and 2161 controls in the validation phase). We identified 1 novel genome-wide significant variant rs17186366 (odds ratio [OR]=1.37 [1.23, 1.54], P=2.8×10-8) located near SOD2. In addition, 2 loci with suggestive association were also identified: rs113168128 (OR=1.72 [1.42, 2.10], P=5.2×10-8), an intronic variant of ERBB4 that is independent from the previously published variants, and rs144248326 (OR=2.13 [1.52, 2.86], P=8.45×10-7), a novel intronic variant in WWTR1. In the further association tests of the top 3 single-nucleotide polymorphisms with each criterion in the polycystic ovary syndrome algorithm, we found that rs17186366 (SOD2) was associated with polycystic ovaries and hyperandrogenism, whereas rs11316812 (ERBB4) and rs144248326 (WWTR1) were mainly associated with oligomenorrhea or infertility. We also validated the previously reported association with DENND1A1. Using the STRING database to characterize protein-protein interactions, we found both ERBB4 and WWTR1 can interact with YAP1, which has been previously associated with polycystic ovary syndrome. CONCLUSION: Through a discovery-validation genome-wide association study on polycystic ovary syndrome identified from electronic health records using an algorithm based on Rotterdam criteria, we identified and validated a novel genome-wide significant association with a variant near SOD2. We also identified a novel independent variant within ERBB4 and a suggestive association with WWTR1. With previously identified polycystic ovary syndrome gene YAP1, the ERBB4-YAP1-WWTR1 network suggests involvement of the epidermal growth factor receptor and the Hippo pathway in the multifactorial etiology of polycystic ovary syndrome.


Assuntos
Síndrome do Ovário Policístico/genética , Receptor ErbB-4/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Estudos de Casos e Controles , Registros Eletrônicos de Saúde , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hiperandrogenismo/genética , Infertilidade Feminina/genética , Pessoa de Meia-Idade , Oligomenorreia/genética , Cistos Ovarianos/genética , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/fisiopatologia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Fatores de Transcrição/metabolismo
11.
Arthritis Rheumatol ; 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307929

RESUMO

OBJECTIVE: This study was undertaken to investigate the hypothesis that a genetic predisposition toward rheumatoid arthritis (RA) increases the risk of 10 cardiometabolic and autoimmune disorders previously associated with RA in epidemiologic studies, and to define new genetic pleiotropy present in RA. METHODS: Two approaches were used to test our hypothesis. First, we constructed a weighted genetic risk score (wGRS) and then examined its association with 10 prespecified disorders. Additionally, a phenome-wide association study (PheWAS) was carried out to identify potential new associations. Second, inverse variance-weighted regression (IVWR) meta-analysis was used to characterize the association between genetic susceptibility to RA and the prespecified disorders, with the results expressed as odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS: The wGRS for RA was significantly associated with type 1 diabetes mellitus (DM) (OR 1.10 [95% CI 1.04-1.16]; P = 9.82 × 10-4 ) and multiple sclerosis (OR 0.82 [95% CI 0.77-0.88]; P = 1.73 × 10-8 ), but not with other cardiometabolic phenotypes. In the PheWAS, wGRS was also associated with an increased risk of several autoimmune phenotypes including RA, thyroiditis, and systemic sclerosis, and with a decreased risk of demyelinating disorders. In the IVWR meta-analyses, RA was significantly associated with an increased risk of type 1 DM (P = 1.15 × 10-14 ), with evidence of horizontal pleiotropy (Mendelian Randomization-Egger intercept estimate P = 0.001) likely driven by rs2476601, a PTPN22 variant. The association between type 1 DM and RA remained significant (P = 9.53 × 10-9 ) after excluding rs2476601, with no evidence of horizontal pleiotropy (intercept estimate P = 0.939). RA was also significantly associated with type 2 DM and C-reactive protein levels. These associations were driven by variation in the major histocompatibility complex region. CONCLUSION: This study presents evidence of pleiotropy between the genetic predisposition to RA and associated phenotypes found in other autoimmune and cardiometabolic disorders, including type 1 DM.

12.
PLoS Genet ; 16(3): e1008684, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226016

RESUMO

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Assuntos
Grupos de Populações Continentais/genética , Lipídeos/sangue , Lipídeos/genética , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Lipídeos/análise , Masculino , Metagenômica/métodos , Grupos Minoritários , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos/epidemiologia
13.
Circ Genom Precis Med ; 13(2): e002480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160020

RESUMO

BACKGROUND: The hypothesis of the Dilated Cardiomyopathy Precision Medicine Study is that most dilated cardiomyopathy has a genetic basis. The study returns results to probands and, when indicated, to relatives. While both the American College of Medical Genetics and Genomics/Association for Molecular Pathology and ClinGen's MYH7-cardiomyopathy specifications provide relevant guidance for variant interpretation, further gene- and disease-specific considerations were required for dilated cardiomyopathy. To this end, we tailored the ClinGen MYH7-cardiomyopathy variant interpretation framework; the specifications implemented for the study are presented here. METHODS: Modifications were created and approved by an external Variant Adjudication Oversight Committee. After a pilot using 81 probands, further adjustments were made, resulting in 27 criteria (9 modifications of the ClinGen MYH7 framework and reintroduction of 2 American College of Medical Genetics and Genomics/Association of Molecular Pathology criteria that were deemed not applicable by the ClinGen MYH7 working group). RESULTS: These criteria were applied to 2059 variants in a test set of 97 probands. Variants were classified as benign (n=1702), likely benign (n=33), uncertain significance (n=71), likely pathogenic (likely pathogenic; n=12), and pathogenic (P; n=3). Only 2/15 likely pathogenic/P variants were identified in Non-Hispanic African ancestry probands. CONCLUSIONS: We tailored the ClinGen MYH7 criteria for our study. Our preliminary data show that 15/97 (15.5%) probands have likely pathogenic/P variants, most of which were identified in probands of Non-Hispanic European ancestry. We anticipate continued evolution of our approach, one that will be informed by new insights on variant interpretation and a greater understanding of the genetic architecture of dilated cardiomyopathy. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03037632.

14.
J Clin Endocrinol Metab ; 105(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917831

RESUMO

CONTEXT: As many as 75% of patients with polycystic ovary syndrome (PCOS) are estimated to be unidentified in clinical practice. OBJECTIVE: Utilizing polygenic risk prediction, we aim to identify the phenome-wide comorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventive treatment. DESIGN, PATIENTS, AND METHODS: Leveraging the electronic health records (EHRs) of 124 852 individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores (PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). We evaluated its predictive capability across different ancestries and perform a PRS-based phenome-wide association study (PheWAS) to assess the phenomic expression of the heightened risk of PCOS. RESULTS: The integrated polygenic prediction improved the average performance (pseudo-R2) for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null model across European, African, and multi-ancestry participants respectively. The subsequent PRS-powered PheWAS identified a high level of shared biology between PCOS and a range of metabolic and endocrine outcomes, especially with obesity and diabetes: "morbid obesity", "type 2 diabetes", "hypercholesterolemia", "disorders of lipid metabolism", "hypertension", and "sleep apnea" reaching phenome-wide significance. CONCLUSIONS: Our study has expanded the methodological utility of PRS in patient stratification and risk prediction, especially in a multifactorial condition like PCOS, across different genetic origins. By utilizing the individual genome-phenome data available from the EHR, our approach also demonstrates that polygenic prediction by PRS can provide valuable opportunities to discover the pleiotropic phenomic network associated with PCOS pathogenesis.

16.
Int J Cardiol ; 298: 107-113, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31447229

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death in the United States. Consequently, individuals who are genetically predisposed for high risk of cardiovascular disease would benefit most from prevention and early intervention approaches. Among common health risk factors affecting adult populations, we evaluated 23 cardiovascular disease-related traits, including BMI, glucose levels and lipid profiling to determine their associations with low-frequency recurrent copy number variations (CNV) (population frequency < 5%). RESULTS: We examined 10,619 unrelated subjects of European ancestry from the Electronic Medical Records and Genomics (eMERGE) Network who were genotyped with 657,366 markers genome-wide on the Illumina Infinium Quad 660 array. We performed CNV calling based on array marker intensity and evaluated data quality, ancestry stratification, and relatedness to ensure unbiased association discovery. Using a segment-based scoring approach, we assessed the association of all CNVs with each trait. In this large genome-wide analysis of low-frequency CNVs, we observed 11 novel genome-wide significant associations of low-frequency CNVs with major cardiovascular disease traits. CONCLUSION: In one of the largest genome-wide studies for low-frequency recurrent CNVs, we identified 11 loci associated with cardiovascular disease and related traits at the genome-wide significance level that may serve as biomarkers for prevention and early intervention studies in subjects who are at elevated risk. Our study further supports the role of low-frequency recurrent CNVs in the pathogenesis of common complex disease traits.

17.
World J Surg ; 44(1): 84-94, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31605180

RESUMO

BACKGROUND: The extent to which obesity and genetics determine postoperative complications is incompletely understood. METHODS: We performed a retrospective study using two population cohorts with electronic health record (EHR) data. The first included 736,726 adults with body mass index (BMI) recorded between 1990 and 2017 at Vanderbilt University Medical Center. The second cohort consisted of 65,174 individuals from 12 institutions contributing EHR and genome-wide genotyping data to the Electronic Medical Records and Genomics (eMERGE) Network. Pairwise logistic regression analyses were used to measure the association of BMI categories with postoperative complications derived from International Classification of Disease-9 codes, including postoperative infection, incisional hernia, and intestinal obstruction. A genetic risk score was constructed from 97 obesity-risk single-nucleotide polymorphisms for a Mendelian randomization study to determine the association of genetic risk of obesity on postoperative complications. Logistic regression analyses were adjusted for sex, age, site, and race/principal components. RESULTS: Individuals with overweight or obese BMI (≥25 kg/m2) had increased risk of incisional hernia (odds ratio [OR] 1.7-5.5, p < 3.1 × 10-20), and people with obesity (BMI ≥ 30 kg/m2) had increased risk of postoperative infection (OR 1.2-2.3, p < 2.5 × 10-5). In the eMERGE cohort, genetically predicted BMI was associated with incisional hernia (OR 2.1 [95% CI 1.8-2.5], p = 1.4 × 10-6) and postoperative infection (OR 1.6 [95% CI 1.4-1.9], p = 3.1 × 10-6). Association findings were similar after limitation of the cohorts to those who underwent abdominal procedures. CONCLUSIONS: Clinical and Mendelian randomization studies suggest that obesity, as measured by BMI, is associated with the development of postoperative incisional hernia and infection.

18.
Front Genet ; 10: 1059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737042

RESUMO

Genomic knowledge is being translated into clinical care. To fully realize the value, it is critical to place credible information in the hands of clinicians in time to support clinical decision making. The electronic health record is an essential component of clinician workflow. Utilizing the electronic health record to present information to support the use of genomic medicine in clinical care to improve outcomes represents a tremendous opportunity. However, there are numerous barriers that prevent the effective use of the electronic health record for this purpose. The electronic health record working groups of the Electronic Medical Records and Genomics (eMERGE) Network and the Clinical Genome Resource (ClinGen) project, along with other groups, have been defining these barriers, to allow the development of solutions that can be tested using implementation pilots. In this paper, we present "lessons learned" from these efforts to inform future efforts leading to the development of effective and sustainable solutions that will support the realization of genomic medicine.

19.
Value Health ; 22(11): 1231-1239, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31708059

RESUMO

BACKGROUND: For patients undergoing percutaneous coronary intervention, gene-drug associations exist relevant to first-line treatment options-antiplatelet agent, clopidogrel, and pain medication, tramadol. Knowledge of genotype information may allow for avoidance of adverse drug events during critical clinical windows. OBJECTIVE: This evaluation estimated cost-effectiveness associated with a multi-gene panel pre-emptively testing two genes providing CYP2C19 genotype-guided strategy for antiplatelet therapy, with CYP2D6 genotype-guided pain management, compared to single gene test for CYP2C19 with random assignment for pain treatment, and to no testing (empiric clopidogrel with random assignment for pain treatment). METHODS: Decision analysis modeling was used to project costs from a payer perspective and patient quality-adjusted life years (QALYs) from the three strategies. The model captured composite risks of major adverse cardiovascular events and pain therapy-related adverse drug events and associated utility estimates. We conducted sensitivity analyses to assess influential input parameters. RESULTS: Over 15 months, multi-gene testing was least costly and yielded more QALYs compared to both single gene and no testing; total incremental costs were $1646 lower with incremental gains of 0.04 QALYs for multi-gene compared with single gene and $11 368 lower with 0.17 QALY gains compared to no test. Base case analyses revealed multi gene was dominant compared to both single gene and no test, as it demonstrated cost savings with increased QALYs. CONCLUSIONS: For these patients, a multi-gene-guided strategy yields a favorable incremental cost-effectiveness ratio compared to the other two treatment strategies. Pre-emptively ascertaining additional gene-drug pair information can inform clinical and economic decision-making at the point of care.

20.
Contemp Clin Trials ; 84: 105820, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31400517

RESUMO

BACKGROUND: Clinical exome sequencing (CES) provides the advantage of assessing genetic variation across the human exome compared to a traditional stepwise diagnostic approach or multi-gene panels. Comparative effectiveness research methods offer an approach to better understand the patient-centered and economic outcomes of CES. PURPOSE: To evaluate CES compared to usual care (UC) in the diagnostic work-up of inherited colorectal cancer/polyposis (CRCP) in a randomized controlled trial (RCT). METHODS: The primary outcome was clinical sensitivity for the diagnosis of inherited CRCP; secondary outcomes included psychosocial outcomes, family communication, and healthcare resource utilization. Participants were surveyed 2 and 4 weeks after results return and at 3-month intervals up to 1 year. RESULTS: Evolving outcome measures and standard of care presented critical challenges. The majority of participants in the UC arm received multi-gene panels [94.73%]. Rates of genetic findings supporting the diagnosis of hereditary CRCP were 7.5% [7/93] vs. 5.4% [5/93] in the CES and UC arms, respectively (P = 0.28). Differences in privacy concerns after receiving CRCP results were identified (0.88 in UC vs 0.38 in CES, P = 0.05); however, healthcare resource utilization, family communication and psychosocial outcomes were similar between the two arms. More participants with positive results (17.7%) intended to change their life insurance 1  month after the first return visit compared to participants returned a variant of uncertain significance (9.1%) or negative result (4.8%) (P = 0.09). CONCLUSION: Our results suggest that CES provides similar clinical benefits to multi-gene panels in the diagnosis of hereditary CRCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA