Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 139: 103891, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31783123

RESUMO

Previous study have shown that Talaromyces marneffei (T. marneffei) induced activation of autophagy. Therefore, we explore signaling pathway that regulates activation of autophagy by intracellular signaling mechanisms during T. marneffei infection. Further, we examine c-Jun N-terminal kinase 1 and 2 (JNK1/2) and p38 signaling pathways that regulate IL-1ß and IL-10 production and activation of autophagy during T. marneffei infection in human dendritic cells (DCs). We found that T. marneffei induced activation of JNK1/2 and p38 in human DCs. Furthermore, the inhibition of JNK1/2 and p38 increased activation of autophagy and decreased the replication of T. marneffei in T. marneffei-infected human DCs. Moreover, IL-1ß secretion in T. marneffei-infected human DCs was dependent on JNK1/2 and autophagy pathways, whereas IL-10 secretion was dependent on JNK1/2, p38 and autophagy pathways. These data suggest that JNK1/2 and p38 pathways play critical roles in activation of autophagy, the multiplication of T. marneffei and subsequent cytokine production during T. marneffei infection.

2.
Int J Oncol ; 53(6): 2542-2554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30272346

RESUMO

Malignant astrocytoma (MA) is the most common and severe type of brain tumor. A greater understanding of the underlying mechanisms responsible for the development of MA would be beneficial for the development of targeted molecular therapies. In the present study, the upregulated differentially expressed genes (DEGs) in MA were obtained from the Gene Expression Omnibus database using R/Bioconductor software. DEGs in different World Health Organization classifications were compared using the Venny tool and 15 genes, including collagen type I α1 chain (COL1A1) and laminin subunit γ1 (LAMC1), were revealed to be involved in the malignant progression of MA. In addition, the upregulated DEGs in MA were evaluated using functional annotations of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes with the Database for Annotation, Visualization, and Integrated Discovery tool. The results indicated that invasion­associated enrichment was observed in 'extracellular matrix' (ECM), 'cell adhesion' and 'phosphoinositide 3­kinase­protein kinase B signaling pathway'. Subsequently, the analysis of the protein­protein interactions was performed using STRING and Cytoscape software, which revealed that the ECM component was the invasion­associated module and its corresponding genes included COL1A1, LAMC1 and fibronectin 1. Finally, survival Kaplan­Meier estimate was conducted using cBioportal online, which demonstrated that COL1A1 expression affected the survival of and recurrence in patients with MA. Moreover, the results of in vitro Transwell assay and western blot analysis revealed that the depleted levels of COL1A1 also decreased the expression of several proteins associated with cell invasion, including phosphorylated­signal transducer and activator of transcription 3, matrix metalloproteinase (MMP)­2, MMP­9 and nuclear factor­κB. On the whole, the present study identified the invasion­related target genes and the associated potential pathways in MA. The results indicated that COL1A1 may be a candidate biomarker for the prognosis and treatment of MA.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulação para Cima , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Invasividade Neoplásica , Prognóstico , Transdução de Sinais , Análise de Sobrevida
3.
Microb Pathog ; 123: 120-125, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964152

RESUMO

Autophagy can regulate antimicrobial immunity. However, it is unknown whether autophagy mediates the immune response of dendritic cells (DCs) to Talaromyces marneffei (T. marneffei) infection. Therefore, to explore the relationship between autophagy and multiplication of T. marneffei and investigate whether ERK1/2 signaling pathway regulates activation of autophagy and TNF-α and IFN-γ secretion by intracellular signaling mechanisms during T. marneffei infection in human DCs. DCs were infected with T. marneffei for different times. First, we found that T. marneffei induced activation of autophagy and ERK1/2 in human DCs. Second, the inhibition of ERK1/2 suppressed activation of autophagy in T. marneffei-infected human DCs. Third, the suppression of ERK1/2 and autophagy decreased TNF-α and IFN-γ production and increased the proliferation of T. marneffei. These data suggest that ERK pathway plays vital regulatory roles in activation of autophagy and subsequent cytokine production during T. marneffei infection. Our data further indicate that autophagy is important in the regulation of the DC immune response to T. marneffei infection, thereby extending our understanding of host immune responses to the fungus.


Assuntos
Autofagia/imunologia , Células Dendríticas/imunologia , Micoses/imunologia , Talaromyces/crescimento & desenvolvimento , Talaromyces/imunologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Humanos , Interferon gama/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Micoses/microbiologia , Fator de Necrose Tumoral alfa/imunologia
4.
Semin Cancer Biol ; 53: 212-222, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059726

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor, and a member of the transforming growth factor ß (TGF-ß) superfamily acting on different neuronal activities. GDNF was originally identified as a neurotrophic factor crucially involved in the survival of dopaminergic neurons of the nigrostriatal pathway and is currently an established therapeutic target in Parkinson's disease. However, GDNF was later reported to be highly expressed in gliomas, especially in glioblastomas, and was demonstrated as a potent proliferation factor involved in the development and migration of gliomas. Here, we review our current understanding and progress made so far by researchers in our laboratories with references to relevant articles to support our discoveries. We present past and recent discoveries on the mechanisms involved in the protection of neurons by GDNF and examine its emerging roles in gliomas, as well as reasons for the abnormal expression in Glioblastoma Multiforme (GBM). Collectively, our work establishes a paradigm by which the ability of GDNF to protect dopaminergic neurons from degradation and its corresponding effects on glioma cells points to an underlying biological vulnerability in the effects of GDNF in the normal brain which can be subverted for use by cancer cells. Hence, presenting novel opportunities for intervention in glioma therapies.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioma/metabolismo , Glioma/terapia , Humanos
5.
Oncol Rep ; 40(1): 443-453, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750313

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.


Assuntos
Antígenos CD/genética , Caderinas/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Fosforilação , Transdução de Sinais
6.
Oncotarget ; 8(43): 74019-74035, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088765

RESUMO

The aim of this study was to identify the receptor for glial cell line-derived neurotrophic factor (GDNF) in glioblastoma multiforme (GBM). After GST pull-down assays, membrane proteins purified from C6 rat glioma cells were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The differentially expressed proteins were annotated using Gene Ontology, and neuropilin-1 (NRP1) was identified as the putative GDNF receptor in glioma. NRP1 was more highly expressed in human GBM brains and C6 rat glioma cells than in normal human brains or primary rat astrocytes. Immunofluorescence staining showed that NRP1 was recruited to the membrane by GDNF, and NRP1 co-immunoprecipitated with GDNF. Using the NRP1 and GDNF protein structures to assess molecular docking in the ZDOCK server and visualization with the PyMOL Molecular Graphics System revealed 8 H-bonds and stable positive and negative electrostatic interactions between NRP1 and GDNF. RNAi knockdown of NRP1 reduced proliferation of C6 glioma cells when stimulated with GDNF. NRP1 was an independent risk factor for both survival and recurrence in GBM patients. High NRP1 mRNA expression correlated with shorter OS and DFS (OS: χ2=4.6720, P=0.0307; DFS: χ2=11.013, P=0.0009). NRP1 is thus a GDNF receptor in glioma cells and a potential therapeutic target.

7.
Front Mol Neurosci ; 10: 199, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28701917

RESUMO

Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.

8.
Oncotarget ; 8(28): 45105-45116, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28187447

RESUMO

The specific mechanisms for epigenetic regulation of gene transcription remain to be elucidated. We previously demonstrated that hyperacetylation of histone H3K9 in promoter II of glioma cells promotes high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene. This hyperacetylation significantly enhanced Egr-1 binding and increased the recruitment of RNA polymerase II (RNA POL II) to that region (P < 0.05). Egr-1 expression was abnormally increased in C6 glioma cells. Further overexpression of Egr-1 significantly increased Egr-1 binding to GDNF promoter II, while increasing RNA POL II recruitment, thus increasing GDNF transcription (P < 0.01). When the acetylation of H3K9 in the Egr-1 binding site was significantly reduced by the histone acetyltransferase (HAT) inhibitor curcumin, binding of Egr-1 to GDNF promoter II, RNA POL II recruitment, and GDNF mRNA expression were significantly downregulated (P < 0.01). Moreover, curcumin attenuated the effects of Egr-1 overexpression on Egr-1 binding, RNA POL II recruitment, and GDNF transcription (P < 0.01). Egr-1 and RNA POL II co-existed in the nucleus of C6 glioma cells, with overlapping regions, but they were not bound to each other. In conclusion, highly expressed Egr-1 may be involved in the recruitment of RNA POL II in GDNF promoter II in a non-binding manner, and thereby involved in regulating GDNF transcription in high-grade glioma cells. This regulation is dependent on histone hyperacetylation in GDNF promoter II.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Acetilação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteína 1 de Resposta de Crescimento Precoce/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioma/genética , Glioma/patologia , Histonas/genética , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Ratos , Transcrição Genética , Transfecção
9.
Microb Pathog ; 93: 95-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26828872

RESUMO

Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Macrófagos/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Micoses/enzimologia , Penicillium/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Micoses/genética , Micoses/metabolismo , Micoses/microbiologia , Fosforilação , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Immunopharmacol Immunotoxicol ; 38(2): 98-102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26667579

RESUMO

To elucidate the anti-inflammatory mechanisms involved, we investigated the effects of atractylenolide III (ATL-III) on cytokine expression, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 mitogen-activated protein kinase (p38), C-Jun-N-terminal protein kinase1/2 (JNK1/2) and nuclear factor-κB (NF-κB) pathways in lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages. Macrophages were incubated with various concentrations (0, 25, 50, 100 µM) of ATL-III and/or LPS (1 µg/mL) for 24 h. The production of nitric oxide (NO) was determined by the Greiss reagent. The production of tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2) and interleukin 6 (IL-6) was determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, macrophages were treated with ATL-III (0, 25, 100 µM) for 1 h and then stimulated by LPS. NF-κB, p38, JNK1/2 and ERK1/2 were determined by western blotting. We found ATL-III showed no inhibitory effect on cell proliferation at concentrations ranging from 1 µM to 100 µM. In addition, ATL-III decreased the release of NO, TNF-α, PGE2 and IL-6 in a dose-dependent manner and showed statistically significant at concentrations of 50 µM and 100 µM as well as cyclooxygenase-2 (COX-2) expression. Furthermore, ATL-III suppressed the transcriptional activity of NF-κB. ATL-III also inhibited the activation of ERK1/2, p38 and JNK1/2 in LPS-treated macrophages and showed statistically significant at concentrations of 25 µM and 100 µM. These data suggest that ATL-III shows an anti-inflammatory effect by suppressing the release of NO, PGE2, TNF-α and IL-6 related to the NF-κB- and MAPK-signaling pathways.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Ciclo-Oxigenase 2/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Transcrição Genética/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
11.
Microb Pathog ; 83-84: 29-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25959526

RESUMO

Increases in cytosolic Ca(2+) concentration ([Ca(2+)]c) promote phagocyte antimicrobial responses. Here, we investigated macrophages stimulated by Penicillium marneffei (P. marneffei). [Ca(2+)]c was determined in macrophages loaded with the fluorescent calcium probe Fura 2/AM as they were stimulated by P. marneffei. We found that P. marneffei induced an increase in [Ca(2+)]c in human macrophages. Further, increased [Ca(2+)]c with the ionophore A23187 promoted phagosomal acidification and maturation and reduced intracellular replication of P. marneffei in P. marneffei-infected human macrophages, whereas decreased [Ca(2+)]c with the chelation MAPTAM decreased TNF-α production, inhibited phagosomal acidification and maturation and increased intracellular replication of P. marneffei. These data indicate that Ca(2+) signaling may play an important role in controlling the replication of P. marneffei within macrophages.


Assuntos
Cálcio/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Penicillium/imunologia , Penicillium/fisiologia , Células Cultivadas , Citosol/química , Humanos , Macrófagos/metabolismo , Penicillium/efeitos dos fármacos , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia
12.
Microb Pathog ; 82: 1-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792289

RESUMO

Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To clarify the mechanisms involved, we evaluated the effect of c-Jun N-terminal kinase 1 and 2 (JNK1/2) on cytokine expression, phagosomal maturation and multiplication of P. marneffei in P. marneffei-stimulated human macrophages. P. marneffei induced the rapid phosphorylation of JNK1/2. Using the specific inhibitor of JNK1/2 (SP600125), we found that the inhibition of JNK1/2 suppressed P. marneffei-induced tumor necrosis factor-α and IL-10 production. In addition, the presence of SP600125 increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that JNK1/2 may play an important role in promoting the replication of P. marneffei. Our findings further indicate that the pathogen through the JNK1/2 pathway may attenuate the immune response and macrophage antifungal function.


Assuntos
Macrófagos/imunologia , Macrófagos/microbiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Penicillium/crescimento & desenvolvimento , Penicillium/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Fagossomos/metabolismo , Fagossomos/microbiologia , Fosforilação , Processamento de Proteína Pós-Traducional
13.
Pharm Biol ; 53(4): 512-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25327442

RESUMO

CONTEXT: Atractylodes macrocephala Koidz is a traditional herb. Atractylodes macrocephalaon polysaccharides (AMP) have been found to enhance immunity and improve heart function. However, the mechanisms of the immunomodulatory effect have not been investigated. OBJECTIVE: We examined whether AMP activated macrophages and explored the mechanisms of activation. MATERIALS AND METHODS: AMP was prepared and evaluated its immunomodulatory activity (25, 50, 100, and 200 µg/mL) by detecting the phagocytosis and the production of tumor necrosis factor-α (TNF-α), IFN-γ, and nitric oxide (NO) in RAW264.7 macrophages. Furthermore, the role of nuclear factor-κB (NF-κB) pathway was examined in regulating TNF-α and NO production. RESULTS: The phagocytosis of macrophages was enhanced by AMP in a dose-dependent manner and the maximal phagocytosis of macrophages occurred at concentrations of 100 and 200 µg/mL. NO, TNF-α, and IFN-γ release was also found to be dose dependent by increasing concentrations of AMP and reached the peak at a concentration of 200 µg/mL. In addition, AMP induced inhibitor kappaB (IκB) degradation and the activation of NF-κB by p65 nuclear translocation, and then the activation of NF-κB in nucleus peaked at a concentration of 200 µg/mL. Besides, NF-κB-specific inhibitor pyrrolidine dithiocarbamate (PDTC) decreased AMP-induced NO and TNF-α production. DISCUSSION AND CONCLUSION: These data suggest that AMP may modulate macrophage activities by stimulating NF-κB or activating NF-κB-dependent mechanisms.


Assuntos
Atractylodes/química , Medicamentos de Ervas Chinesas/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Fatores Imunológicos/isolamento & purificação , Interferon gama/imunologia , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Polissacarídeos/isolamento & purificação , Transdução de Sinais , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Immunopharmacol Immunotoxicol ; 36(6): 420-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270720

RESUMO

Atractylenolide I (ATL-I) is a bioactive component of Rhizoma Atractylodis macrocephalae. Although increasing evidence shows that ATL-I has an anti-inflammatory effect, the anti-inflammatory molecular mechanism of ATL-I is still unknown. In this study, we investigated the effect of ATL-I on cell viability by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and the level of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) by enzyme-linked immunosorbent assay (ELISA) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Further, we examined the effect of ATL-I on the activation of nuclear factor-kappaB (NF-κB) and phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) by Western blot. We also investigated the effect of ATL-I on the expression of myeloid differentiation protein-2 (MD-2), CD14, complement receptor 3 (CR3), scavenger receptor class A (SR-A), toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). We found that ATL-I showed no inhibitory effect on cell viability at concentrations ranging from 1 µM to 100 µM and markedly reduced the release of IL-6 and TNF-α at a concentrate-dependent manner. In addition, ATL-I suppressed the activity of nuclear NF-κB and the phosphorylation of ERK1/2 and p38 in LPS-treated RAW264.7 cells. Further analysis showed that ATL-I inhibited the expression of MD-2, CD14, SR-A, TLR4 and MyD88, but the expression of CR3 was unaffected. These data suggest that ATL-I shows an anti-inflammatory effect by inhibiting TNF-α and IL-6 production. The anti-inflammatory effects of ATL-I may be associated with the inhibition of the NF-κB, ERK1/2 and p38 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Lactonas/farmacologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Sesquiterpenos/farmacologia , Animais , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interleucina-6/biossíntese , Interleucina-6/imunologia , Macrófagos/enzimologia , Camundongos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA