Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 12(1): 310-324, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33446013

RESUMO

In clinical practice, we found that microRNA (miR)-146a-5p is significantly up-regulated in peripheral blood mononuclear cells (PBMCs) of primary sjögren's syndrome (pSS) patients. In vitro experiments confirmed that miR-146a-5p promotes T helper 17 (Th17) cell differentiation, but the specific mechanism is still unknown. To solve this problem, 20 pSS patients and 20 healthy subjects were enrolled in this study and PBMCs were isolated from their blood. The expression of the membrane IL-23 R (mIL-23 R) in PBMCs was determined. CD3+ T cells were also isolated and used to further analyze the relationship between the ectodomain shedding of mIL-23 R and a disintegrin and metalloprotease 17 (ADAM17). Finally, miR-146a-5p inhibitor and mimics were transfected into PBMCs to evaluate the relationship between ADAM17 and mIL-23 R, and explore the role of mIL-23 R and ADAM17 in Th17 cell differentiation. Our results revealed a significantly increased expression of miR-146a-5p in PBMCs from pSS patients and significantly increased percentage of Th17 cells compared to PBMCs from healthy controls. Under polarization culture conditions, pSS patient-derived PBMCs can more easily differentiate into Th17 cells, which was, to a great extent, attributable to the increased expression of mIL-23 R. Moreover, ADAM17, an ectodomain sheddase of mIL-23 R, was targeted and negatively regulated by miR-146a-5p, which reduced the ectodomain shedding of mIL-23 R. Overall, our results suggested that miR-146a-5p could promote Th17 cell differentiation through targeting and negatively regulating ADAM17. Thus, these results might offer a new approach in the treatment of pSS.

2.
Neurosci Lett ; 531(1): 52-6, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23085525

RESUMO

Group II and III metabolic glutamate receptors (mGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Previous pharmacological evidences show that activation of mGluR7 could inhibit nociceptive reception. However, the distribution and expression patterns of mGluR7 after peripheral injury remain unclear. Herein we found that mGluR7 was expressed in the rat peptidergic dorsal root ganglion (DRG) neurons and large neurons, but rarely in isolectin B4 positive neurons. Sciatic nerve ligation experiment showed that mGluR7 was anterogradely transported from cell body to the peripheral site. Furthermore, after peripheral nerve injury, mGluR7 expression was down-regulated in both peptidergic and large DRG neurons. Our work suggests that mGluR7 might be involved in the regulation of pathological pain after peripheral nerve injury.


Assuntos
Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Nervo Isquiático/lesões , Animais , Regulação para Baixo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA