Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Ticks Tick Borne Dis ; 12(3): 101679, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33578256

RESUMO

Ticks and tick-borne rickettsial diseases have been gaining greater attention in China over the past decade. However, most published studies to date have occurred in Northern China, with limited investigations occurring in China's southern provinces. As part of larger surveillance efforts, a cross-sectional survey was conducted in six sites at Guangdong, Guangxi and Yunnan investigating rickettsial infection in ticks. A total of 581 ticks were collected from hosts and screened via PCR, targeting rrs, gltA, ompB, sca4, and ompA gene fragments. Two of 12 Haemaphysalis formosensis ticks were infected with novel Rickettsia strain GD01, which was closest phylogenetically (97.3-98.9 % identity) to Rickettsia tamurae strain AT-1, but not within the same clade. Another detected strain (GD02) shared similar identity, 99-100 % across four gene targets, to recently detected Candidatus Rickettsia longicornii isolate ROK-HL727, with an overall prevalence of 12.5 % (71/569). The presence of such pathogens calls for increased public health attention and active surveillance in patients reporting recent tick bites.

2.
Biomed Res Int ; 2021: 8880179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532500

RESUMO

Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.

3.
J Med Entomol ; 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399212

RESUMO

Spotted fever group rickettsiae, mainly maintained and transmitted by ticks, are important etiological agents of (re)emerging zoonotic diseases worldwide. It is of great significance to investigate spotted fever group rickettsiae in ticks in different areas for the prevention and control of rickettsioses. In this study, a total of 305 ticks were collected from wild and domestic animals in Chongqing, Guizhou, Yunnan, and Guangxi provinces of southwestern China during 2017-2019 and examined for the presence of spotted fever group rickettsiae by PCR with primers targeting the partial gltA, ompA, rrs, and htrA genes. Results showed that two spotted fever group rickettsiae species, including the pathogenic Candidatus Rickettsia jingxinensis (Rickettsiales: Rickettsiaceae) and a potential novel species Rickettsia sp. sw (Rickettsiales: Rickettsiaceae), were identified. The Ca. R. jingxinensis sequences were recovered from Rhipicephalus microplus (Ixodida: Ixodidae) and Haemaphysalis longicornis (Ixodida: Ixodidae) ticks and phylogenetically clustered with previous Ca. R. jingxinensis, Ca. R. longicornii (Rickettsiales: Rickettsiaceae), and Rickettsia sp. XY118 (Rickettsiales: Rickettsiaceae) strains. Rickettsia sp. sw was detected in Amblyomma geoemydae (Ixodida: Ixodidae) and Rh. microplus. Interestingly, as far as we know, this was the first report of Rickettsia (Rickettsiales: Rickettsiaceae) in A. geoemydae. Phylogenetic analyses indicated that this potential novel species was closely related to R. aeschlimannii (Rickettsiales: Rickettsiaceae) with gltA and ompA genes and grouped in a cluster composed of R. montanensis (Rickettsiales: Rickettsiaceae), R. raoultii (Rickettsiales: Rickettsiaceae), R. aeschlimannii, R. massiliae (Rickettsiales: Rickettsiaceae), and R. rhipicephali (Rickettsiales: Rickettsiaceae) with htrA, while formed a separate clade with rrs. The pathogenicity of Rickettsia sp. sw should be further confirmed. These results expand the knowledge of the geographical distribution and vector distribution of spotted fever group rickettsiae in China and are useful for assessing the potential public health risk.

4.
Trends Genet ; 37(3): 292-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33353761
5.
BMC Genomics ; 21(1): 871, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287703

RESUMO

BACKGROUND: NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. RESULTS: A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone-/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2-1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. CONCLUSION: We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2-1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs.

6.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322211

RESUMO

The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I-III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33347789

RESUMO

Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.

8.
Int J Neurosci ; : 1-11, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33081549

RESUMO

BACKGROUND: The appropriate strategies are needed for stimulating the endogenous neurogenesis or introducing extrinsic neural progenitors, which could be harnessed as the regenerative resources for cueing the neurodegenerations. Adult neurogenesis is the endogenous continuing physiology in limited brain regions such as hippocampus, olfactory system, and hypothalamus. Besides adult neurogenesis, induced pluripotent stem cells (iPSCs) induced functional neurons could be another option for regenerative therapies. OBJECTIVE: Current studies are trying to improve the adult neurogenesis and enable the iPSCs induced neurons into neural regeneration. Methods: Here in this review, we mainly introduced the recent progress in neural stem cell biology and its application in the treatment of the neurodegenerations. We main separated the strategy in summarizing the mediators and potential targets to promoting endogenous neural regeneration and transplantation of neural progenitors. CONCLUSION: By collecting and comparing the advantages disadvantages between above-mentioned two strategies, we will offer the insight on future development of stem cell therapy in treating neurodegenerative patients.

9.
BMJ Open ; 10(10): e043411, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060093

RESUMO

OBJECTIVE: To compare the epidemiological characteristics and transmission dynamics in relation to interventions against the COVID-19 and severe acute respiratory syndrome (SARS) outbreak in mainland China. DESIGN: Comparative study based on a unique data set of COVID-19 and SARS. SETTING: Outbreak in mainland China. PARTICIPANTS: The final database included 82 858 confirmed cases of COVID-19 and 5327 cases of SARS. METHODS: We brought together all existing data sources and integrated them into a comprehensive data set. Individual information on age, sex, occupation, residence location, date of illness onset, date of diagnosis and clinical outcome was extracted. Control measures deployed in mainland China were collected. We compared the epidemiological and spatial characteristics of COVID-19 and SARS. We estimated the effective reproduction number to explore differences in transmission dynamics and intervention effects. RESULTS: Compared with SARS, COVID-19 affected more extensive areas (1668 vs 230 counties) within a shorter time (101 vs 193 days) and had higher attack rate (61.8 vs 4.0 per million persons). The COVID-19 outbreak had only one epidemic peak and one epicentre (Hubei Province), while the SARS outbreak resulted in two peaks and two epicentres (Guangdong Province and Beijing). SARS-CoV-2 was more likely to infect older people (median age of 52 years), while SARS-CoV tended to infect young adults (median age of 34 years). The case fatality rate (CFR) of either disease increased with age, but the CFR of COVID-19 was significantly lower than that of SARS (5.6% vs 6.4%). The trajectory of effective reproduction number dynamically changed in relation to interventions, which fell below 1 within 2 months for COVID-19 and within 5.5 months for SARS. CONCLUSIONS: China has taken more prompt and effective responses to combat COVID-19 by learning lessons from SARS, providing us with some epidemiological clues to control the ongoing COVID-19 pandemic worldwide.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Vigilância da População/métodos , Adulto , China/epidemiologia , Surtos de Doenças , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida/tendências , Adulto Jovem
10.
Int J Hyg Environ Health ; 230: 113610, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32896785

RESUMO

The ongoing pandemic of 2019 novel coronavirus disease (COVID-19) is challenging global public health response system. We aim to identify the risk factors for the transmission of COVID-19 using data on mainland China. We estimated attack rate (AR) at county level. Logistic regression was used to explore the role of transportation in the nationwide spread. Generalized additive model and stratified linear mixed-effects model were developed to identify the effects of multiple meteorological factors on local transmission. The ARs in affected counties ranged from 0.6 to 9750.4 per million persons, with a median of 8.8. The counties being intersected by railways, freeways, national highways or having airports had significantly higher risk for COVID-19 with adjusted odds ratios (ORs) of 1.40 (p = 0.001), 2.07 (p < 0.001), 1.31 (p = 0.04), and 1.70 (p < 0.001), respectively. The higher AR of COVID-19 was significantly associated with lower average temperature, moderate cumulative precipitation and higher wind speed. Significant pairwise interactions were found among above three meteorological factors with higher risk of COVID-19 under low temperature and moderate precipitation. Warm areas can also be in higher risk of the disease with the increasing wind speed. In conclusion, transportation and meteorological factors may play important roles in the transmission of COVID-19 in mainland China, and could be integrated in consideration by public health alarm systems to better prevent the disease.

11.
Innovation (N Y) ; 1(2): 100026, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32914140

RESUMO

Recently, considerable efforts have been focused on intensifying the screening process for asymptomatic COVID-19 cases in the Chinese Mainland, especially for up to 10 million citizens living in Wuhan City by nucleic acid testing. However, a high percentage of domestic asymptomatic cases did not develop into symptomatic ones, which is abnormal and has drawn considerable public attention. Here, we aimed to investigate the prevalence of COVID-19 infections in the Chinese Mainland from a statistical perspective, as it is of referential significance for other regions. By conservatively assuming a development time lag from pre-symptomatic (i.e., referring to the infected cases that were screened before the COVID-19 symptom onset) to symptomatic as an incubation time of 5.2 days, our results indicated that 92.5% of those tested in Wuhan City, China, and 95.1% of those tested in the Chinese Mainland should have COVID-19 syndrome onset, which was extremely higher than their corresponding practical percentages of 0.8% and 3.3%, respectively. We propose that a certain false positive rate may exist if large-scale nucleic acid screening tests for asymptomatic cases are conducted in common communities with a low incidence rate. Despite adopting relatively high-sensitivity, high-specificity detection kits, we estimated a very low prevalence of COVID-19 infections, ranging from 10-6 to 10-4 in both Wuhan City and the Chinese Mainland. Thus, the prevalence rate of asymptomatic infections in China had been at a very low level. Furthermore, given the lower prevalence of the infection, close examination of the data for false positive results is necessary to minimize social and economic impacts.

12.
PLoS One ; 15(9): e0238179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881902

RESUMO

Carotenoid cleavage dioxygenase (CCD), a key enzyme in carotenoid metabolism, cleaves carotenoids to form apo-carotenoids, which play a major role in plant growth and stress responses. CCD genes had not previously been systematically characterized in Brassica napus (rapeseed), an important oil crop worldwide. In this study, we identified 30 BnCCD genes and classified them into nine subgroups based on a phylogenetic analysis. We identified the chromosomal locations, gene structures, and cis-promoter elements of each of these genes and performed a selection pressure analysis to identify residues under selection. Furthermore, we determined the subcellular localization, physicochemical properties, and conserved protein motifs of the encoded proteins. All the CCD proteins contained a retinal pigment epithelial membrane protein (RPE65) domain. qRT-PCR analysis of expression of 20 representative BnCCD genes in 16 tissues of the B. napus cultivar Zhong Shuang 11 ('ZS11') revealed that members of the BnCCD gene family possess a broad range of expression patterns. This work lays the foundation for functional studies of the BnCCD gene family.


Assuntos
Brassica napus/enzimologia , Dioxigenases/genética , Genoma de Planta , Proteínas de Plantas/genética , Arabidopsis/enzimologia , Brassica napus/genética , Carotenoides/metabolismo , Mapeamento Cromossômico , Dioxigenases/classificação , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas
13.
Vector Borne Zoonotic Dis ; 20(11): 817-824, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32749919

RESUMO

Background: Human babesiosis is an emerging zoonotic disease transmitted by ticks in China. A few systematic reports on Babesia spp. was involved with ticks, especially in the human babesiosis endemic areas in Northeastern China. Materials and Methods: Ticks were collected from 30 individual waypoints along 2.0 km transects in two recreational forests. Babesia spp. infection in ticks was screened by amplifying the partial 18s rRNA gene with subsequent sequencing. Multivariate logistic regression analysis was used to determine the association between tick infection and related environmental risk factors. Cluster analyses were performed using SaTScan v6.0 software to identify any geographical cluster of infected ticks. Results: A total of 2380 Ixodes persulcatus and 461 Haemaphysalis concinna ticks were collected. Of the 0.97% of I. persulcatus ticks that tested positive, five Babesia species were identified, including B. bigemina (n = 6), B. divergens (n = 2), B. microti (n = 3), B. venatorum (n = 11), and one novel strain HLJ-8. Thirteen (2.92%) H. concinna ticks tested positive for B. bigemina (n = 1), B. divergens (n = 1), three genetic variants of Babesia represented by HLJ-874, which was closely related to Babesia sp.MA#361-1, and eight other Babesia variants represented by HLJ242, which were similar to B. crassa. Each study site had 5-6 different Babesia spp. One waypoint was more likely to yield B. venatorum (relative risk = 15.36, p = 0.045) than all other waypoints. Conclusions: There exists a high genetic diversity of Babesia spp. across a relatively small sampled region. Further study is needed to understand the risks these variants pose to human health.

14.
Lancet Planet Health ; 4(8): e320-e329, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32800150

RESUMO

BACKGROUND: Haemaphysalis longicornis, a vector of various pathogens with medical and veterinary importance, is native to eastern Asia, and recently reached the USA as an emerging disease threat. In this study, we aimed to identify the geographical distribution, hosts, and associated pathogens of H longicornis. METHODS: Data were collected from multiple sources, including a field survey, reference book, literature review, and related websites. The thematic maps showing geographical distribution of H longicornis and associated pathogens were produced by ArcGIS. Hosts of H longicornis and positive rates for H longicornis-associated pathogens were estimated by meta-analysis. Ecological niche modelling was used to predict potential global distribution of H longicornis. FINDINGS: H longicornis was found to be present in ten countries, predominantly in eastern Asia, the USA, Australia, and New Zealand. The tick was known to feed on a variety of domestic and wild animals, and humans. At least 30 human pathogens were associated with H longicornis, including seven species of spotted fever group rickettsiae, seven species in the family of Anaplasmataceae, four genospecies in the complex Borrelia burgdorferi sensu lato, two Babesia species, six species of virus, and Francisella, Bartonella, Coxiella, and Toxoplasma, which were mainly reported in eastern Asia. The predictive modelling revealed that H longicornis might affect more extensive regions, including Europe, South America, and Africa, where the tick has never been recorded before. INTERPRETATION: H longicornis is relatively common in the world, and is associated with various human and animal pathogens. Authorities and health-care workers should be aware of the threat of the tick species to public health and veterinary medicine. Surveillance and further investigations should be enhanced globally. FUNDING: National Natural Science Foundation of China and National Key Research and Development Program of China.

15.
Cell ; 182(5): 1328-1340.e13, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.

16.
Genes (Basel) ; 11(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668742

RESUMO

Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes' diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.

17.
Vector Borne Zoonotic Dis ; 20(10): 755-762, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679008

RESUMO

As one of the important tick-borne zoonotic pathogens, Anaplasma has both veterinary and public health significance. Here, we performed a survey of Anaplasma infection in the goats from a farm in Beijing, China, and found 44.6% (41/92) were infected with Anaplasma capra, and 22.8% (21/92) were infected with Anaplasma sp. This Anaplasma sp. bacterium was close to a recently emerging Anaplasma platys strain based on gltA and groEL gene phylogenetic analysis. As to further understand the characteristics of Anaplasma sp., we raised a couple of positive goats (n = 2) in the laboratory with tick-free settings. We observed inappetence, vomiting, high fever, and weakness of limbs in the goat's offspring (n = 3). In addition, the blood samples from all offspring were all positive of this Anaplasma spp. We did not see any intracellular morulae in neutrophils, monocytes, and erythrocytes, but we identified some in the platelets of the blood smears from the positive goats by light microscopy. We named it A. platys-like and suggested it may infect platelets and be transmitted vertically through the placenta of goats. These findings deserve further evaluation.

18.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143436

RESUMO

Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.

19.
Open Forum Infect Dis ; 7(3): ofaa062, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32190710

RESUMO

Background: Human babesiosis is a common zoonosis caused by Babesia and is attracting an increasing concern worldwide. The natural course of babesiosis infection and how the human immune system changes during the course of babesiosis infection are not clear. Methods: We followed up 1 case infected with Babesia venatorum for 5 years. The patient was immune-intact and received no standard treatment. Clinical data were obtained from medical records. Microbiological tests, ribonucleic acid (RNA) sequence, and serum cytokines and chemokines were detected at different time points. Results: The patient was confirmed as B venatorum infection based on his tick-bite history, clinical manifestations, and positive results of microbiological tests. The parasitemia of the patient persisted for approximately 2 months. With flu-like symptoms aggravating, most cytokines and chemokines in RNA and protein levels increased progressively and reached the peak when fever occurred; and their concentrations decreased to baseline during the same time as clearance of babesia parasites. Conclusions: Babesia venatorum infection could take a mild self-limited course in immune-intact individuals. The natural changes of most cytokines and chemokines demonstrated very similar trends, which correlated with blood parasitemia and clinical manifestations. Cytokine profiles involving multiple inflammatory cytokines might be a good indicator of babesia infection.

20.
BMC Plant Biol ; 20(1): 115, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171243

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. RESULTS: We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA3, gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. CONCLUSION: The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.


Assuntos
Brassica napus/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Brassica napus/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA