Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
Theriogenology ; 175: 34-43, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34481228

RESUMO

Schisanhenol (SAL), a biphenyl cyclooctene-type lignin compound which can be extracted and isolated from many plants of the Schisandra family, exhibits a variety of biological activities including anti chronic cough, night sweating, thirst, diabetes, and obesity. However, its effects on the female reproductive system are unclear. Previous studies showed that SAL had potential antioxidant activity in heart, liver, and brain. Therefore, we hypothesized that SAL could improve porcine early development by reducing oxidative stress. The purpose of this study was to investigate the effects of SAL on preimplantation porcine embryos and the potential mechanisms. In this study, we analyzed the effects of SAL on embryo quality, reactive oxygen species (ROS) accumulation, mitochondrial function, cell proliferation and apoptosis, and the activation of MAPK pathway. The results showed that 10 µM SAL significantly increased the blastocyst formation rate, proliferation ability, and mitochondrial activity while reducing ROS accumulation and apoptosis level. During this process, the phosphorylation levels of ERK1/2, JNK1/2/3, and p38 were decreased. In summary, 10 µM SAL improves porcine preimplantation embryo development by reducing ROS accumulation.

2.
Int Wound J ; 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477312

RESUMO

Pressure injury (PI) is still a significant public health problem to be solved. Accurate prediction can lead to timely prophylaxis and therapy. However, the currently used Braden score shows insufficient predictive validity. We aimed to develop a nomogram to predict PI development in critically ill patients. We extracted data from Medical Information Mart for Intensive Care-IV v1.0. Variable selection was based on univariate logistic regression and all-subset regression. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the nomogram and Braden score. Decision curve analysis (DCA) was performed to identify and compare the clinical usefulness between the nomogram model and Braden score. We have developed a novel and practical nomogram that accurately predicts pressure ulcers. The AUC of the new model was better than that of the Braden score (P < .001). DCA showed that the nomogram model had a better net benefit than the Braden score at any given threshold. This finding needs to be confirmed by external validation as well as multicentre prospective studies.

3.
J Colloid Interface Sci ; 606(Pt 2): 1729-1736, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500171

RESUMO

During the production of micro lithium-ion batteries (LIBs), which are widely used in wireless headphones and other small portable devices, numerous factors can affect their quality, among which the content of water plays a crucial role. In this work, the influence of water in electrodes on the performances of micro LIBs is studied deeply. When the content of water increases, both the rate performance and the cycling performance of the batteries fade. The discharge capacity retention of the battery from high water content sample group H (group H) is 81.81% after 350 cycles at 2C, while that of the battery from low water content sample group L (group L) is 89.89% under the same condition. As for the rate performance, the discharge capacity of group H is only 58.66% of group L at 5C. To take a step further, it is mainly because an overgrowth of the solid electrolyte interphase film happen with the growth of water content. Accordingly, excess lithium ions are consumed and the porous structure of the anode is destroyed. Considering the results above, we believe that this work can offer a theory foundation to carry out the failure analysis of micro batteries.

4.
ACS Chem Neurosci ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516079

RESUMO

Sphingosine-1-phosphate receptor 1 (S1PR1) is ubiquitously expressed among all tissues and plays key roles in many physiological and cellular processes. In the central nervous system (CNS), S1PR1 is expressed in different types of cells including neurons, astrocytes, and oligodendrocyte precursor cells. S1PR1 has been recognized as a novel therapeutic target in multiple sclerosis and other diseases. We previously reported a promising S1PR1-specific radioligand, [11C]CS1P1 (previously named [11C]TZ3321), which is under clinical investigation for human use. In the current study, we performed a detailed characterization of [3H]CS1P1 for its binding specificity to S1PR1 in CNS using autoradiography and immunohistochemistry in human and rat CNS tissues. Our data indicate that [3H]CS1P1 binds to S1PR1 in human frontal cortex tissue with a Kd of 3.98 nM and a Bmax of 172.5 nM. The distribution of [3H]CS1P1 in human and rat CNS tissues is consistent with the distribution of S1PR1 detected by immunohistochemistry studies. Our microPET studies of [11C]CS1P1 in a nonhuman primate (NHP) show a standardized uptake value of 2.4 in the NHP brain, with test-retest variability of 0.23% among six different NHPs. Radiometabolite analysis in the plasma samples of NHP and rat, as well as in rat brain samples, showed that [11C]CS1P1 was stable in vivo. Kinetic modeling studies using a two-compartment tissue model showed that the positron emission tomography (PET) data fit the model well. Overall, our study provides a detailed characterization of [3H]CS1P1 binding to S1PR1 in the CNS. Combined with our microPET studies in the NHP brain, our data suggest that [11C]CS1P1 is a promising radioligand for PET imaging of S1PR1 in the CNS.

5.
Nature ; 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526716

RESUMO

UTX (also known as KDM6A) encodes a histone H3K27 demethylase and is an important tumour suppressor that is frequently mutated in human cancers1. However, as the demethylase activity of UTX is often dispensable for mediating tumour suppression and developmental regulation2-8, the underlying molecular activity of UTX remains unknown. Here we show that phase separation of UTX underlies its chromatin-regulatory activity in tumour suppression. A core intrinsically disordered region (cIDR) of UTX forms phase-separated liquid condensates, and cIDR loss caused by the most frequent cancer mutation of UTX is mainly responsible for abolishing tumour suppression. Deletion, mutagenesis and replacement assays of the intrinsically disordered region demonstrate a critical role of UTX condensation in tumour suppression and embryonic stem cell differentiation. As shown by reconstitution in vitro and engineered systems in cells, UTX recruits the histone methyltransferase MLL4 (also known as KMT2D) to the same condensates and enriches the H3K4 methylation activity of MLL4. Moreover, UTX regulates genome-wide histone modifications and high-order chromatin interactions in a condensation-dependent manner. We also found that UTY, the Y chromosome homologue of UTX with weaker tumour-suppressive activity, forms condensates with reduced molecular dynamics. These studies demonstrate a crucial biological function of liquid condensates with proper material states in enabling the tumour-suppressive activity of a chromatin regulator.

6.
Bioresour Technol ; 342: 125865, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536838

RESUMO

A synergistic partial denitrification, anaerobic ammonium oxidation (Anammox), and in-situ fermentation (SPDAF) system was established to solve problems of wastewater treatment plants (WWTPs) in combined treatment of domestic sewage, and nitrate wastewater discharged from industrial areas. The SPDAF system was started up at decreasing temperatures (26.8-18.9 ℃), and remained robust at abrupt temperature drop and drastic temperature fluctuations (20.7-14.1 ℃). The influent and effluent total inorganic nitrogen (TIN) were 97.0 ± 3.7 mg/L and 10.3 ± 4.0 mg/L, respectively. In-situ fermentation supplemented electron donors for NO3--N reduction. A high TIN removal efficiency, of 89.5 ± 3.9% was obtained. Specifically, Anammox contributed 90.9 ± 5.2% to TIN removal. Furthermore, the abundances of hydrolysis and acidogenesis bacteria were 14.02% and 29.47% in the low and high zones, respectively, which promoted fermentation and the use of complex organics. This study provided novel insights for actual operation of WWTPs.

7.
Chem Commun (Camb) ; 57(68): 8496-8499, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34351325

RESUMO

A DBU-catalyzed desymmetric [3+2] cycloaddition between para-quinamines and photogenerated ketenes was developed for the first time. Under the irradiation of low-energy blue LEDs, a variety of hydroindoles bearing all-carbon quaternary centers were produced with good reaction efficiency and complete diastereoselectivity (34 examples, 45-99% yields and >95 : 5 dr). This protocol represents a new approach to synthetically significant hydroindoles, and features broad substrate scope, high functional group compatibility and mild reaction conditions.

8.
Compr Rev Food Sci Food Saf ; 20(5): 5145-5172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409725

RESUMO

Public attention to foodquality and safety has been increased significantly. Therefore, appropriate analytical tools are needed to analyze and sense the food quality and safety. Volatile organic compounds (VOCs) are important indicators for the quality and safety of food products. Odor imaging technology based on chemo-responsive dyes is one of the most promising methods for analysis of food products. This article reviews the sensing and imaging fundamentals of odor imaging technology based on chemo-responsive dyes. The aim is to give detailed outlines about the theory and principles of using odor imaging technology for VOCs detection, and to focus primarily on its applications in the field of quality and safety evaluation of food products, as well as its future applicability in modern food industries and research. The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods , poultry meat, aquatic products, fruits and vegetables, and tea. It has the potential for the rapid, reliable, and inline assessment of food safety and quality by providing odor-image-basedmonitoring tool. Practical Application: The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods, poultry meat, aquatic products, fruits and vegetables, and tea.

9.
Plant Cell ; 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436598

RESUMO

Brassinosteroids (BRs) regulate plant growth, development and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34374477

RESUMO

Forrestiacids A (1) and B (2) are a novel class of [4+2] type pentaterpenoids derived from a rearranged lanostane moiety (dienophile) and an abietane unit (diene). These unprecedented molecules were isolated using guidance by molecular ion networking (MoIN) from Pseudotsuga forrestii, an endangered member of the Asian Douglas Fir Family. The intermolecular hetero-Diels-Alder adducts feature an unusual bicyclo[2.2.2]octene ring system. Their structures were elucidated by spectroscopic analysis, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism calculations, and X-ray diffraction analysis. This unique addition to the pentaterpene family represents the largest and the most complex molecule successfully assigned using computational approaches to predict accurately chemical shift values. Compounds 1 and 2 exhibited potent inhibitory activities (IC50 s <5 µM) of ATP-citrate lyase (ACL), a new drug target for the treatment of glycolipid metabolic disorders including hyperlipidemia. Validating this activity 1 effectively attenuated the de novo lipogenesis in HepG2 cells. These findings provide a new chemical class for developing potential therapeutic agents for ACL-related diseases with strong links to traditional medicines.

11.
Carbohydr Polym ; 272: 118481, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420740

RESUMO

This study explored the potential application of physical combined enzyme treatment to modify starch granules. Starch was modified by exposure to cold plasma (CP) for 1, 3, and 9 min and to pullulanase (PUL) for 12, 24, and 36 h. Individual treatments with CP and PUL somewhat modified starch structure and physicochemical properties. Nevertheless, compared with native starch and individual treatments, CP-PUL combined treatment significantly (p < 0.05) promoted the subsequent structural modification, increased the short-chain ratio and the amylose content, reduce the molecular weight and the relative crystallinity, and disturb the short-range order. CP also improved the properties of PUL-modified starch, including enhanced solubility, thermal properties and resistance to enzymatic hydrolysis but worsened swelling power and peak viscosity properties. This research provides a new perspective for the rational application of CP-PUL co-treated starch in the food industry.

12.
J Med Chem ; 64(16): 12075-12088, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34375106

RESUMO

The dysfunctional bromodomain PHD finger transcription factor (BPTF) exerts a pivotal influence in the occurrence and development of many human diseases, particularly cancers. Herein, through the structural decomposition of the reported BPTF inhibitor TP-238, the effective structural fragments were synthetically modified to obtain our lead compound DC-BPi-03. DC-BPi-03 was identified as a novel BPTF-BRD inhibitor with a moderate potency (IC50 = 698.3 ± 21.0 nM). A structure-guided structure-activity relationship exploration gave rise to two BPTF inhibitors with much higher affinities, DC-BPi-07 and DC-BPi-11. Notably, DC-BPi-07 and DC-BPi-11 show selectivities 100-fold higher than those of other BRD targets. The cocrystal structures of BPTF in complex with DC-BPi-07 and DC-BPi-11 demonstrate the rationale of chemical efforts from the atomic level. Further study showed that DC-BPi-11 significantly inhibited leukemia cell proliferation.

13.
Bioresour Technol ; 340: 125647, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34385123

RESUMO

In-situ free nitrous acid (FNA) and free ammonia (FA) treatments are more feasible than side-stream methods to achieve nitritation. To assess the optimum conditions and long-term performance of in-situ inhibition by FNA, batch tests and a sequencing batch reactor (SBR) treating mature landfill leachate were conducted and established. As a result, the selective inhibition characteristic by FNA was more conspicuous than FA, and FNA (0.175 mg N/L, 6 h) treatment are more biocidal to nitrite oxidizing bacteria (NOB). Moreover, ammonia oxidizing bacteria (AOB) were more sensitive to the FA environment but its activity recovered preferentially compared to NOB. The SBR achieved a sustained nitrite accumulation rate above 90% for 200 days, with a significant decrease of NOB activity and microbial abundance according to qPCR and 16S rRNA gene sequencing results. In-situ selective inhibition by FNA (0.175 mg N/L, 6 h) has been proved to be effective to maintain stable nitritation.


Assuntos
Ácido Nitroso , Poluentes Químicos da Água , Amônia , Reatores Biológicos , Nitritos , Oxirredução , RNA Ribossômico 16S/genética , Esgotos
14.
Bioelectrochemistry ; 142: 107895, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34364026

RESUMO

Microbial electrochemical snorkel (MES) is a short-circuited microbial fuel cell applicable to water treatment that does not produce energy but requires lower cost for its implementation. Few reports have already described its water treatment capabilities but no deeper electrochemical analysis were yet performed. We tested various materials (iron, stainless steel and porous graphite) and configurations of snorkel in order to better understand the rules that will control in a wetland the mixed potential of this self-powered system. We designed a model snorkel that was studied in laboratory and on the field. We confirmed the development of MES by identifying anodic and cathodic parts, by measuring the current between them and by analyzing microbial ecology in laboratory and field experiments. An important application is denitrification of surface water. Here we discuss the influence of nitrate on its electrochemical response and denitrification performances. Introducing nitrate caused the increase of the mixed potential of MES and of current at a potential value relatively more positive than for nitrate-reducing biocathodes described in the literature. The major criteria for promoting application of MES in artificial wetland dedicated to mitigation of non-point source nitrate pollution from agricultural water are considered.

15.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361392

RESUMO

As the applications of heterogeneous materials expand, aluminum laminates of similar materials have attracted much attention due to their greater bonding strength and easier recycling. In this work, an alloy design strategy was developed based on accumulative roll bonding (ARB) to produce laminates from similar materials. Twin roll casting (TRC) sheets of the same composition but different cooling rates were used as the starting materials, and they were roll bonded up to three cycles at varying temperatures. EBSD showed that the two TRC sheets deformed in distinct ways during ARB processes at 300 °C. Major recrystallizations were significant after the first cycle on the thin sheet and after the third cycle on the thick sheet. The sheets were subject to subsequent aging for better mechanical properties. TEM observations showed that the size and distribution of nano-precipitations were different between the two sheet sides. These nano-precipitations were found to significantly promote precipitation strengthening, and such a promotive effect was referred to as hetero-deformation induced (HDI) strengthening. Our work provides a new promising method to prepare laminated heterogeneous materials with similar alloy TRC sheets.

16.
Br J Haematol ; 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405393

RESUMO

Despite the high cure probability for acute promyelocytic leukaemia (APL), a minority of patients will relapse and the risk factors for relapse are unclear. We retrospectively analysed 212 patients who were diagnosed with non-high-risk APL and received all-trans retinoic acid (ATRA) plus arsenic as front-line therapy at Peking University Institute of Hematology from February 2014 to December 2018. A total of 176 patients (83%) received oral arsenic (realgar-indigo naturalis formula) plus ATRA, 36 patients (17%) received arsenic trioxide plus ATRA and 203 patients were evaluable for relapse. After a median (range) follow-up of 53·6 (24·3-85·4) months, two patients had molecular relapse and eight had haematological relapse. A promyelocytic leukaemia/retinoic acid receptor alpha (PML-RARA) transcript level of ≥6·5% at the end of induction therapy was associated with relapse (P = 0·031). The 5-year cumulative incidence of relapse, event-free survival and overall survival were 5·5%, 92·3% and 96·3% respectively. In conclusion, the present long-term follow-up study further confirmed the high cure probability of ATRA plus oral arsenic as front-line therapy for non-high-risk APL and showed that the PML-RARA transcript level at the end of induction therapy was associated with relapse.

17.
Leuk Lymphoma ; : 1-10, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34405769

RESUMO

Acute myeloid leukemia (AML) with t(8;21) is a heterogeneous disease and needs to be stratified. Both, cancer cells and immune cells participate in tumor initiation, growth and progression and might affect clinical outcomes. TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3), an immune checkpoint molecule, is expressed not only on immune cells but also on leukemic stem cells (LSCs) in AML. This prompted us to investigate the prognostic significance of TIM-3 in t(8;21) AML. A total of 47 t(8;21) AML patients were tested for TIM-3 expression by multi-parameter flow cytometry at diagnosis. 35 of these, who received chemotherapy alone or along with allogeneic hematopoietic stem cell transplantation were followed up. The expression pattern of TIM-3 on T-cells and NK (natural killer) cells as a whole (T + NK) and LSCs were evaluated independently. High percentage of T + NK - TIM-3+ and CD34+CD38-TIM-3+ cells were significantly associated with a high 2-year cumulative incidence of relapse (CIR) (p = 0.028, 0.016). Further, concurrent high frequencies of T + NK-TIM-3+ and CD34+CD38-TIM-3+ cells at diagnosis were significantly associated with a high 2-year CIR (p < 0.0001) and this together with c-KIT D816 mutation were the independent adverse prognostic factors for relapse (hazard ratio (HR)=2.5, [95% confidence interval (CI), 1.1-6.0], p = 0.04; HR = 46.5, [95% CI, 2.7-811.5], p = 0.009). In conclusion, the expression pattern of TIM-3 on both T and NK cells and LSCs at diagnosis had prognostic significance in t (8;21) AML.

18.
Food Funct ; 12(17): 8169-8180, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34291264

RESUMO

Non-thermal plasma treatment is an emerging and effective starch modification technique. In this paper, plasma pretreatment was used to modify citrate naked barley starch for enhancing the ability of citric acid to access the starch structure. Plasma treatment did not alter the granule morphology and crystalline type of starch, but degraded the starch molecules and caused more short chains. Plasma pretreatment could etch the starch surface and depolymerize the starch molecules, which increased the accessibility of citric acid for uniform hydrolysis in the subsequent esterification reaction. Therefore, plasma pretreatment significantly promoted the structural and physicochemical modification of the citrate starch, including the enhancement of the degree of substitution, the short-range ordered degree and gelatinization temperatures, and the decreases in the molecular weight, long chains of amylopectin and pasting viscosities. Meanwhile, plasma pretreatment improved the efficiency of acid hydrolysis and decreased the enzymatic digestibility, so that it showed a higher resistant starch content in comparison with its corresponding citrate starch. This paper could provide a new insight into the lower digestion rate and improved functional properties of citrate starch.

19.
Genes (Basel) ; 12(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199614

RESUMO

MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.


Assuntos
Núcleo Celular/metabolismo , MicroRNAs/metabolismo , Transporte de RNA , Transporte Ativo do Núcleo Celular , Animais , Homeostase , Humanos , MicroRNAs/genética
20.
Ann Hematol ; 100(10): 2557-2566, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34278524

RESUMO

Recent studies have shown that approximately 50% of patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitor (TKI) therapy with a sustained deep molecular response (DMR) (BCR-ABL1IS ≤ 0.01%) can achieve treatment-free remission (TFR, stopping TKI without relapse) and that prior interferon (IFN)-α therapy and higher NK cell counts at and after TKI discontinuation are associated with TFR. We recently reported that post-TKI discontinuation of IFN-α therapy could prevent molecular relapse (MR, BCR-ABL1IS > 0.1%). Here, we evaluated whether NK cells are associated with MR and investigated the effects of post-TKI discontinuation IFN-α therapy on lymphocyte subsets. A total of 34 patients measuring blood lymphocyte subclasses were included. In the 22 patients who did not receive IFN-α therapy, at 1 month after TKI discontinuation, the nonrelapsed patients showed a significantly higher proportion and count of NK cells than the relapsed patients. In particular, the proportion and count of CD56dim NK cells were significantly higher in the nonrelapsed patients than in the relapsed patients. In the 12 patients who received IFN-α therapy, the level of CD56bright NK cells increased significantly after 3 and 6 months of IFN-α therapy. In summary, NK cells, in particular CD56dim NK cells, were associated with MR after TKI discontinuation in patients with CML. Additionally, IFN-α therapy gradually increased the level of CD56bright NK cells in patients with CML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...