Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.954
Filtrar
1.
Anal Chim Acta ; 1189: 339182, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815041

RESUMO

Dysregulation of MicroRNAs (miRNAs) cause various diseases in humans, and developing reliable methods to detect miRNAs is critical for molecular diagnostics and personalized medicine. This study developed a toehold-mediated target invasion combined with duplex-specificity nuclease (DSN)-assisted cyclic signal amplification fluorescent sensor. Herein, we take advantage of toehold-mediated target invasion process to ensure the high selectivity of miRNA determination, coupled with the unique cleavage properties of DSN to improve the sensitivity of the strategy significantly. Throughout the assay, the whole procedure of detection the target let-7a has a limit of detection (LOD) as low as 9.00 fM and an excellent linear range from 1 pM to 100 nM for no more than 60 min. The assay shows reasonable specificity in detecting mismatched miRNAs and can realize single-base discrimination in the let-7 families. Finally, the developed method was applied to detect the miRNAs extracted from human serum. The results were consistent with those based on the quantitative reverse transcription-polymerase chain reaction(qRT-PCR) method, which shows great potential application value in clinical molecular diagnostics and biological research.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Endonucleases , Humanos , Limite de Detecção , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120245, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364037

RESUMO

Simultaneous saccharification and fermentation (SSF) of cassava is one of the key steps in the production of fuel ethanol. In order to improve the monitoring efficiency of the ethanol production process and the product yield, this study puts forward a new idea for monitoring of the cassava SSF process based on the molecular spectroscopy fusion (MSF) technique. Savisky-Golay (SG) combined with standard normal variable (SNV) was used to preprocess the obtained Raman spectra and near-infrared (NIR) spectra. Competitive adaptive reweighted sampling (CARS) was used to optimize the characteristic wavelengths of the preprocessed Raman spectra and the NIR spectra, and the optimized features were fused in the feature layer. The support vector machine (SVM) model of the process parameters during the cassava SSF based on the MSF features was established. The experimental results showed that compared with the best CARS-SVM model based on the single-molecule spectral features, the performance of the best CARS-SVM model based on fusion features has been significantly improved. For detection of the glucose content, the RMSEP, RP2 and RPD of the best CARS-SVM model were 5.398, 0.957 and 4.922, respectively. For detection of the ethanol content, the RMSEP, RP2 and RPD of the best CARS-SVM model were 4.394, 0.977 and 6.758, respectively. The obtained results reveal that the combination of MSF technique and appropriate chemometric methods can achieve high-precision quantitative detection of the process parameters during the cassava SSF. This study can provide technical basis and experimental reference for the development of portable spectrometer equipment for process monitoring of the cassava SSF.


Assuntos
Manihot , Etanol , Fermentação , Máquina de Vetores de Suporte
3.
Ann Hematol ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851438

RESUMO

HBB gene mutations lead to many kinds of diseases, of which, except for the two most common diseases of thalassemia and sickle cell anemia, rare kinds of hemolytic anemia, such as hemoglobin Bristol-Alesha, are rarely reported, no ideal treatment in clinic. A child suffered from chronic recurrent hemolytic attacks and the related genes of hereditary hemolytic anemia were detected on her. Hematopoietic stem cell transplantation was conducted in the treatment of the patient. The patient was diagnosed as hemoglobin Bristol-Alesha and achieved complete recovery after hematopoietic stem cell transplantation. For Bristol-Alesha, without characteristic clinical manifestation and specific biochemical examination, diagnosis is dependent on the gene mutation detection and hematopoietic stem cell transplantation is an effective and curable method.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34741738

RESUMO

Nanoparticles and organic pollutants are two major contaminants found in aquatic environments. Algae are regarded as the model organism for the risk assessment of pollutants in water. In our previous study, we investigated the toxic effects of nonylphenol (NP), a typical organic water pollutant, on algae; however, it remains unclear how algae respond to the coexistence of NP and nanoparticles. In this study, a concentration gradient of nanoscale zero-valent iron (nZVI; 10, 50, 100, and 200 mg/L) was added to NP-exposed Dictyosphaerium sp. to investigate both the toxic effects of this combination and the potential for NP removal. nZVI had a dose-dependent effect on NP-exposed algae, with high nZVI concentrations significantly decreasing algal biomass and pigment content, as well as severely damaging algal cellular ultrastructure. In addition, genes involved in antioxidant response, photosynthesis, and ribosome synthesis were significantly altered when NP-exposed algae were incubated with nZVI. In contrast to high nZVI concentrations, adding a small concentration of nZVI led to reduced toxicity in NP-exposed algae, while significantly enhancing the NP removal rate. This study improves our understanding of algal responses to various pollutants and suggests that nZVI may assist in the remediation of NP in aquatic ecosystems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34743249

RESUMO

A Gram-stain-negative, wheat, rod-shaped, non-motile, non-spore forming, and facultatively anaerobic bacterium strain, designated as PIT, was isolated from saline silt samples collected in saltern in Yantai, Shandong, China. Growth was observed within the ranges 4-45 °C (optimally at 33 °C), pH 6.0-9.0 (optimally at pH 7.0) and 1.0-11.0% NaCl (optimally at 3.0%, w/v). Strain PIT showed highest 16S rRNA gene sequence similarity to Kangiella sediminilitoris BB-Mw22T (98.3%) and Kangiella taiwanensis KT1T (98.3%). The major cellular fatty acids (> 10% of the total fatty acids) were iso-C15:0 (52.7%) and summed featured 9 (iso-C17:1ω9c/C16:0 10-methyl, 11.8%). The major polar lipids identified were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol. The major respiratory isoprenoid quinone was Q-8. The G + C content of the genomic DNA was 45.8%. Average Nucleotide Identity values between whole genome sequences of strain PIT and next related type strains supported the novel species status. Based on physiological, biochemical, chemotaxonomic characteristics and genomic analysis, strain PIT is considered to represent a novel species within the genus Kangiella, for which the name Kangiella shandongensis sp. nov. is proposed. The type strain is PIT (= KCTC 82509 T = MCCC 1K04352T).

7.
Environ Res ; : 112287, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34743805

RESUMO

Microplastics (MPs) and nonylphenol (NP) are typical pollutants that are frequently detected in aquatic environments and can pose a risk to aquatic organisms. However, the responses of algae, the producers in aquatic ecosystems, to MP and NP co-exposure have not been extensively investigated. In this study, polystyrene (PS, 50 mg/L) was selected as a representative MP to evaluate its short-term effects on algae treated with NP (4 mg/L). The results showed that PS mitigated the toxicity of NP to algae after 96 h of exposure, as illustrated by the higher cell densities and pigment concentrations, as well as lower extracellular protein contents and better integrity of intracellular structures, in algae subjected to PS + NP treatment compared with those subjected to NP treatment. Moreover, the upregulated expression of genes involved in photosynthesis and downregulated expression of ribosomal genes as well as genes encoding ATPase and antioxidase, analyzed through RNA-sequencing analysis, further indicated the potential repair and defense mechanisms of PS in NP-treated algae.

8.
Chem Sci ; 12(42): 14126-14132, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760197

RESUMO

DNA 5-hydroxymethyluracil (5hmU) is a thymine modification existing in the genomes of various organisms. The post-replicative formation of 5hmU occurs via hydroxylation of thymine by ten-eleven translocation (TET) dioxygenases in mammals and J-binding proteins (JBPs) in protozoans, respectively. In addition, 5hmU can also be generated through oxidation of thymine by reactive oxygen species or deamination of 5hmC by cytidine deaminase. While the biological roles of 5hmU have not yet been fully explored, determining its genomic location will highly assist in elucidating its functions. Herein, we report a novel enzyme-mediated bioorthogonal labeling method for selective enrichment of 5hmU in genomes. 5hmU DNA kinase (5hmUDK) was utilized to selectively install an azide (N3) group or alkynyl group into the hydroxyl moiety of 5hmU followed by incorporation of the biotin linker through click chemistry, which enabled the capture of 5hmU-containing DNA fragments via streptavidin pull-down. The enriched fragments were applied to deep sequencing to determine the genomic distribution of 5hmU. With this established enzyme-mediated bioorthogonal labeling strategy, we achieved the genome-wide mapping of 5hmU in Trypanosoma brucei. The method described here will allow for a better understanding of the functional roles and dynamics of 5hmU in genomes.

9.
Mikrochim Acta ; 188(12): 419, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782919

RESUMO

Yolk-shell structure magnetic metal-organic framework nanoparticles were prepared via post solvothermal method and employed as a magnetic solid-phase extraction adsorbent for selective pre-concentration of 5'-ribonucleotides by π stacking interaction, hydrogen bonding, and the strong interaction between titanium ions (Ti4+) and phosphate group. The properties of the materials were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, vibrating sample magnetometer, infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analysis. The main parameters affecting the adsorption-desorption process, including adsorbent amount, incubation time, incubation temperature, sample pH, shaking speed, elution solution, and elution time, were systematically optimized. Finally, 1.0 mg of adsorbent mixed with 1.0 mL sample solution (10.0 mmol⋅L-1 NaCl, pH 3.0) and shaken at 135 rpm for 5 min at 40 °C, washed with 1.0 mL Na3PO4-NH3∙H2O under vortex for 5 min were selected as optimized adsorption-desorption conditions. The binding performance of adsorbent towards five nucleotides was evaluated by static adsorption experiments. The data are well-fitted to the Langmuir isotherm model and the maximum adsorption capacity is 27.8 mg g-1 for adenosine 5'-monophosphate. The limit of detection of the method is 19.44-38.41 ng mL-1. Under the optimal conditions, the adsorbent was successfully applied to magnetic solid-phase extraction and high performance liquid chromatography determination of five nucleotides in octopus, chicken, fish, and pork samples.

10.
Andrologia ; : e14319, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34796510

RESUMO

The main purpose of this systematic review and meta-analysis was to explore the association between uric acid (UA) and erectile dysfunction (ED). Databases including PubMed, Cochrane Library and Web of Science were retrieved to identify studies published in English up to 31 June 2021. We preregistered this meta-analysis in the PROSPERO (registration number CRD42021267035). Two independent authors extracted the relevant data from all enrolled articles. We evaluated the quality of enrolled studies using the Newcastle-Ottawa Scale (NOS). The standardized mean difference (SMD), as well as the corresponding 95% confidence intervals (95% CIs), was used to assess the difference between ED patients and healthy subjects. A total of five studies were enrolled for our meta-analysis to explore the association of UA with ED. The pooled SMD of the UA level difference between ED patients and healthy subjects was 0.42 (95% CI:0.09, 0.74, p < 0.001). There were no individual data that significantly influenced the pooled SMDs in the sensitivity analysis. There was no evidence of publication bias. This novel meta-analysis confirmed that UA was an independent risk factor for ED, which suggested that the erectile function of patients with elevated uric acid should be evaluated by clinicians.

11.
Heart Surg Forum ; 24(5): E906-E908, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34730492

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that threatens global health. During the pandemic period of COVID-19, the task for prevention in the general ward of cardiovascular surgery is fairly arduous. The present study intends to summarize our experience with infection control, including ward setting, admission procedures, personnel management, health education, and so on, to provide references for clinical management.


Assuntos
COVID-19/prevenção & controle , Procedimentos Cirúrgicos Cardíacos/normas , Doenças Cardiovasculares/epidemiologia , Guias como Assunto , Pandemias/prevenção & controle , Quartos de Pacientes/normas , Centros de Atenção Terciária , COVID-19/epidemiologia , Doenças Cardiovasculares/cirurgia , China/epidemiologia , Comorbidade , Humanos , Estudos Retrospectivos , SARS-CoV-2
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(11): 1161-1168, 2021 Nov 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34753549

RESUMO

OBJECTIVES: To systematically evaluate the effect of gonadotropin-releasing hormone analogue (GnRHa) treatment on the final adult height of children over 6 years of age with central precocious puberty (CPP) or early and fast puberty (EFP). METHODS: PubMed, MEDLINE, Embase, Cochrane Library, CNKI, and Wanfang Data were searched for related articles on GnRHa treatment for children with CPP or EFP. Stata 12.0 software was used to perform a Meta analysis of related data. RESULTS: A total of 10 studies were included, and the total sample size was 720 children, with 475 children in the GnRHa treatment group and 245 children in the control group. The Meta analysis showed that compared with the control group, the GnRHa treatment group had significantly better final adult height (WMD=3.30, 95%CI: 2.49-4.12, P<0.001), standard deviation score of final adult height (WMD=0.51, 95%CI: 0.29-0.73, P<0.001), and height gain (WMD=2.89, 95%CI: 2.17-3.60, P<0.001). No severe adverse events were reported in these studies. CONCLUSIONS: GnRHa treatment is safe and effective in improving the final adult height of children over 6 years of age with CPP or EFP.


Assuntos
Puberdade Precoce , Adulto , Estatura , Criança , Hormônio Liberador de Gonadotropina , Humanos , Puberdade , Puberdade Precoce/tratamento farmacológico
13.
Invest Ophthalmol Vis Sci ; 62(14): 22, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797904

RESUMO

Purpose: This study interrogated the transcriptional features and immune cellular landscape of the retinae of rats subjected to oxygen-induced retinopathy (OIR). Methods: Bulk RNA sequencing was performed with retinal RNA isolated from control and OIR rats. Gene set enrichment analysis (GSEA) was undertaken to identify gene sets associated with immune responses in retinal neovascularization. Bulk gene expression deconvolution analysis by CIBERSORTx was performed to identify immune cell types involved in retinal neovascularization, followed by functional enrichment analysis of differentially expressed genes (DEGs). Protein-protein interaction analysis was performed to predict the hub genes relevant to identified immune cell types. CIBERSORTx was applied to profile immune cell types in the macula of patients with both proliferative diabetic retinopathy (PDR) and diabetic macular edema using a public RNA-seq dataset. Results: Transcriptome analysis by GSEA revealed that the retina of OIR rats and patients with PDR is characterized by increased immunoregulatory interactions and complement cascade. Deconvolution analysis demonstrated that M2 macrophages infiltrate the retinae of OIR rats and patients with PDR. Functional enrichment analysis of DEGs in OIR rats showed that the dysregulated genes are related to leukocyte-mediated immunity and myeloid leukocyte activation. Downstream protein-protein interaction analysis revealed that several potential hub genes, including Ccl2, Itgam, and Tlr2, contribute to M2 macrophage infiltration in the ischemic retina. Conclusions: This study highlights application of the gene expression deconvolution tool to identify immune cell types in inflammatory ocular diseases with transcriptomes, providing a new approach to assess changes in immune cell types in diseased ocular tissues.

14.
Open Med (Wars) ; 16(1): 1718-1727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34825063

RESUMO

Mitophagy affects the activation of hepatic stellate cells (HSCs). Mitochondria-targeted ubiquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces the production of intracellular reactive oxygen species (ROS). However, its relationship with mitophagy remains unclear. This study evaluated mitophagy during HSC activation and the effects of MitoQ on mitophagy in cell culture and in an animal model of the activation of HSCs. We found that MitoQ reduced the activation of HSCs and alleviated hepatic fibrosis. PINK1 (PTEN-induced putative kinase 1) is a putative serine/threonine kinase located in the mitochondria's outer membrane. While the activation of primary HSCs or LX-2 cells was associated with reduced PINK1/parkin-mediated mitophagy, MitoQ reduced intracellular ROS levels, enhanced PINK1/parkin-mediated mitophagy, and inhibited the activation of HSCs. After knocking down the key mitophagy-related protein, PINK1, in LX-2 cells to block mitophagy, MitoQ intervention failed to inhibit HSC activation. Our results showed that MitoQ inhibited the activation of HSCs and alleviated hepatic fibrosis by enhancing PINK1/parkin-mediated mitophagy.

15.
Sci Rep ; 11(1): 22493, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795308

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has infected millions worldwide, therefore there is an urgent need to increase our diagnostic capacity to identify infected cases. Although RT-qPCR remains the gold standard for SARS-CoV-2 detection, this method requires specialised equipment in a diagnostic laboratory and has a long turn-around time to process the samples. To address this, several groups have recently reported the development of loop-mediated isothermal amplification (LAMP) as a simple, low cost and rapid method for SARS-CoV-2 detection. Herein we present a comparative analysis of three LAMP-based assays that target different regions of the SARS-CoV-2: ORF1ab RdRP, ORF1ab nsp3 and Gene N. We perform a detailed assessment of their sensitivity, kinetics and false positive rates for SARS-CoV-2 diagnostics in LAMP or RT-LAMP reactions, using colorimetric or fluorescent detection. Our results independently validate that all three assays can detect SARS-CoV-2 in 30 min, with robust accuracy at detecting as little as 1000 RNA copies and the results can be visualised simply by color changes. Incorporation of RT-LAMP with fluorescent detection further increases the detection sensitivity to as little as 100 RNA copies. We also note the shortcomings of some LAMP-based assays, including variable results with shorter reaction time or lower load of SARS-CoV-2, and false positive results in some experimental conditions and clinical saliva samples. Overall for RT-LAMP detection, the ORF1ab RdRP and ORF1ab nsp3 assays have faster kinetics for detection but varying degrees of false positives detection, whereas the Gene N assay exhibits no false positives in 30 min reaction time, which highlights the importance of optimal primer design to minimise false-positives in RT-LAMP. This study provides validation of the performance of LAMP-based assays as a rapid, highly sensitive detection method for SARS-CoV-2, which have important implications in development of point-of-care diagnostics for SARS-CoV-2.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/genética , Saliva/metabolismo , Adulto , COVID-19/diagnóstico , COVID-19/genética , COVID-19/metabolismo , Feminino , Humanos , Masculino , Saliva/virologia
16.
Immunology ; 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826154

RESUMO

Anti-CD52 antibody (anti-CD52-Ab) leads to a rapid depletion of T and B cells, followed by reconstitution of immune cells with tolerogenic characteristics. However, very little is known about its effect on innate immune cells. In this study experimental autoimmune encephalomyelitis (EAE) mice were administered murine anti-CD52-Ab to investigate its effect on dendritic cells and monocytes/macrophages in the periphery lymphoid organs and the central nervous system (CNS). Our data show that blood and splenic innate immune cells exhibited significantly increased expression of MHC-II and costimulatory molecules, which was associated with increased capacity of activating antigen specific T cells, at first day but not three weeks after five daily treatment with anti-CD52-Ab in comparison to controls. In contrast to the periphery, microglia and infiltrating macrophages in the CNS exhibited reduced expression levels of MHC-II and costimulatory molecules after antibody treatment at both time points investigated when compared to controls. Furthermore, the transit response of peripheral innate immune cells to anti-CD52-Ab treatment was also observed in the lymphocyte-deficient SCID mice, suggesting the changes are not a direct consequence of the mass depletion of lymphocytes in the periphery. Our study demonstrates a dynamic and tissue-specific modulation of the innate immune cells in their phenotype and function following the antibody treatment. The findings of differential modulation of the microglia and infiltrating macrophages in the CNS in comparison to the innate immune cells in the peripheral organs support the CNS specific beneficial effect of alemtuzumab treatment on inhibiting neuroinflammation in multiple sclerosis (MS) patients.

17.
Int Immunopharmacol ; : 108372, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34810128

RESUMO

Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1ß and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.

18.
Biosensors (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821640

RESUMO

The long non-coding RNA (lncRNA) MALAT1 acts as an oncogene. RNA interference (RNAi) is an effective method to control the expression of specific genes and can be used for the treatment of tumors, but an effective and safe carrier system is a significant obstacle to gene therapy. Herein, we explored the possibility of constructing an in situ bio-responsive self-assembled fluorescent gold-short hairpin RNA nanocomplex (Au-shRNA NCs) delivery system by co-incubating gold and MALAT1-shRNA for precise hepatocellular carcinoma (HCC) imaging and treatment. Due to the characteristics of the cancer microenvironment, Au-shRNA NCs self-assembled in HCC cells (HepG2) but did not occur in control cells (L02) under the same conditions. The in situ bio-responsive self-assembled Au-shRNA NCs delivery system can realize cancer cell bioimaging and promote cell uptake and endosomal escape mechanism, thereby realizing effective transfection. They effectively silenced target gene MALAT1, and with the downregulation of MALAT1, we found that several molecules involved in autophagic flux were also regulated. In vitro and tumor-bearing mouse model experiments demonstrated that the as-prepared fluorescent Au-shRNA NCs can readily realize tumor bioimaging and effectively silence the target gene MALAT1, and those autophagy-related pathway molecules were significantly downregulated, thereby exerting a tumor suppressor efficiency. This raises the possibility of realizing accurate multi-scale bio-imaging from the molecular-level with targeted gene-recognition to cancer cell imaging as well as in vivo tumor tissue imaging for the simultaneous precise cancer therapy.

19.
Mar Drugs ; 19(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34822499

RESUMO

Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and ß-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.

20.
J Inflamm Res ; 14: 5999-6010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815689

RESUMO

Introduction: Bone cancer pain is characterized by persistent pain, usually requiring drugs to relieve pain. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis, which has antioxidant and analgesic effects. But, the effect of baicalin on bone cancer pain is unclear. Thus, this study aimed to explore the mechanism of baicalin on SD rats with bone cancer pain. Materials and Methods: The MADB-106 breast cancer cells-induced bone pain model was constructed and carried out baicalin treatment. The therapeutic effect of baicalin on bone cancer pain model was observed by hematoxylin-eosin staining and immunofluorescence staining. We also performed transcriptome sequencing analysis of baicalin in the treatment of bone metastases. Also, RT-qPCR and ELISA were used to detect the expression levels of inflammation factors. Results: After baicalin treatment, osteoclast activation was inhibited and the number of bone trabeculae was increased. Baicalin inhibited the protein expression level of inflammatory factors (IL-1ß, IL-6, TNF-α and PGE2) in the bone metastases group. Based on the transcriptome sequencing of the bone metastases group and the baicalin treatment group, baicalin inhibited the expression of ALPP, DUSP1, CYR61, ALPPL2, SPP1 and TLR4. RT-qPCR was also used to validate the expression levels of these cytokine genes. Conclusion: Baicalin had a certain inhibitory effect on the SD rat model of bone metastasis cancer. These insights can guide future research on the molecular mechanism of bone cancer pain and provide a theoretical basis for baicalin in the treatment of bone pain caused by breast cancer in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...