Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Cell Mol Immunol ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432061

RESUMO

Innate immunity mediated by Toll-like receptors (TLRs), which can recognize pathogen molecular patterns, plays a critical role in type 1 diabetes development. TLR7 is a pattern recognition receptor that senses single-stranded RNAs from viruses and host tissue cells; however, its role in type 1 diabetes development remains unclear. In our study, we discovered that Tlr7-deficient (Tlr7-/-) nonobese diabetic (NOD) mice, a model of human type 1 diabetes, exhibited a significantly delayed onset and reduced incidence of type 1 diabetes compared with Tlr7-sufficient (Tlr7+/+) NOD mice. Mechanistic investigations showed that Tlr7 deficiency significantly altered B-cell differentiation and immunoglobulin production. Moreover, Tlr7-/- NOD B cells were found to suppress diabetogenic CD4+ T-cell responses and protect immunodeficient NOD mice from developing diabetes induced by diabetogenic T cells. In addition, we found that Tlr7 deficiency suppressed the antigen-presenting functions of B cells and inhibited cytotoxic CD8+ T-cell activation by downregulating the expression of both nonclassical and classical MHC class I (MHC-I) molecules on B cells. Our data suggest that TLR7 contributes to type 1 diabetes development by regulating B-cell functions and subsequent interactions with T cells. Therefore, therapeutically targeting TLR7 may prove beneficial for disease protection.

2.
Biomed Pharmacother ; 135: 111183, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401222

RESUMO

BACKGROUND: Our previous studies found that Pure total flavnoids from citrus (PTFC) can effectively improve non-alcoholic steatohepatitis (NASH) in mice. Here, we discuss on the mechanism of PTFC in treating NASH with focus on the regulation of the gut microbiota and bile acid metabolism. METHODS: C57BL/6 J mice were randomly divided into three groups: normal diet group (Normal), high-fat diet group (HFD) and high-fat + PTFC treatment group (PTFC). Mice in the Normal group were fed chow diet, while the other groups were fed high fat diet (HFD) for 16 weeks. In the 5th week, the mice in the PTFC group were treated with 50 mg/kg/day PTFC for an additional twelve weeks. After sacrifice, histopathology of the liver was assessed, and the gut microbial composition was analyzed by 16S rDNA gene sequencing. Bile Acid profiles in serum were determined by ultraperformance liquid chromatography (UPLC-MS/MS). RESULTS: PTFC intervention significantly attenuated HFD-induced NASH symptoms compared with the HFD group in mice. 16S rDNA sequencing showed that PTFC treatment increased the phylogenetic diversity of the HFD-induced microbiota dysbiosis. PTFC intervention significantly increased the relative abundances of Bacteroidaceae and Christensenellaceae. Furthermore, PTFC reduced the content of toxic bile acids, such as TDCA, DCA, TCA, CA and increased the ratio of secondary to primary bile acids. FXR and TGR5 deficiency were significantly alleviated. CONCLUSION: PTFC can improve NASH via the the gut microbiota and bile acid metabolism.

3.
Mol Ecol Resour ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33426774

RESUMO

We present a high-quality genome assembly for the Asiatic toad (Bufo gargarizans) and explore the evolution of several large gene families in amphibians. With a large genome assembly size of 4.55 Gb, the chromosome-scale assembly includes 747 scaffolds with an N50 of 539.8 Mb and 1.79% gaps. Long terminal repeats (LTRs) constitute a higher proportion of the genome and their expansion is a key contributor to the inflated genome size in this species. This is very different from other small amphibian genomes, but similar to that of the enormous axolotl genome. The genome retains a large number of duplicated genes, with tandem (TD) and proximal duplications (PD) the predominant mode of duplication. A total of 122 gene families have undergone significant expansion and were mainly enriched in sensory perception of smell and bitter taste. The CYP2C subfamily, which plays an important role in metabolic detoxification, specifically expanded via TD and PD in the Asiatic toad and the cane toad (true toads). Most of Na+ /K+ -ATPase genes experienced accelerated evolution along Bufonid lineages and two amino acid sites involving toad-toxin resistance were found to experience positive selection. We also revealed a dynamic evolution of olfactory and vomeronasal receptor gene families which was likely driven by the water-to-land transition. The high-quality genome of the Asiatic toad will provide a solid foundation to understand the genetic basis of its many biological processes.

4.
Int J Antimicrob Agents ; : 106251, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33259915

RESUMO

Overexpression of the acrAB genes regulated by RamA and overexpression of oqxAB regulated by RarA has been reported to mediate multidrug resistance in gram-negative bacilli. In this study, the regulation of acrAB and oqxAB simultaneously by the global regulator RamA was investigated in a multidrug resistant Klebsiella pneumoniae clinical isolate (KP22) resistant to tigecycline and other antimicrobials. KP22 overexpressed ramA due to a ramR mutation, along with an unexpected overexpression of oqxB. Deletion of ramA led to a 16-fold decrease in tigecycline MIC with down-expression of acrB (4.3-fold) and oqxB (7.1-fold) compared to KP22. Trans-complementation of KP22∆ramA with the wild-type ramA gene restored tigecycline MIC and upregulation of the acrB and oqxB genes (acrB, 3.9-fold; oqxB, 4.0-fold compared to KP22). When oqxB was knocked out, MICs of ciprofloxacin, olaquindox and nitrofurantoin were considerably decreased while deletion of acrB led to MIC decreases for cefepime, piperacillin/tazobactam and tigecycline in addition to the above 3 antimicrobials. The results of electrophoretic mobility shift assay showed that RamA could bind the promoter regions of both the acrAB and oqxAB operons. This study demonstrates for the first time that RamA can directly regulate multidrug resistance efflux pumps AcrAB and OqxAB in K. pneumoniae.

5.
PLoS One ; 15(12): e0243778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362263

RESUMO

The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) as an important freshwater aquaculture species with high commercial value, exhibited unsynchronized growth. However, the potentially metabolic mechanism remains unclear. In this study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to investigate the hepatopancreatic metabolic profiles of twenty giant freshwater prawns between the fast-growing group and slow-growing group. In the metabolomics assay, we isolated 8,293 peaks in positive and negative iron mode. Subsequently, 44 significantly differential metabolites were identified. Functional pathway analysis revealed that these metabolites were significantly enriched in three key metabolic pathways. Further integrated analysis indicated that glycerophospholipid metabolism and aminoacyl-tRNA biosynthesis have significant impact on growth performance in M.rosenbergii. Our findings presented here demonstrated the critical metabolites and metabolic pathways involved in growth performance, moreover provided strong evidence for elucidating the potentially metabolic mechanism of the unsynchronized growth in M. rosenbergii.

6.
Zookeys ; 977: 101-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177944

RESUMO

Multiple disciplines can help to discover cryptic species and resolve taxonomic confusions. The Asian horned toad genus Megophrys sensu lato as a diverse group was proposed to contain dozens of cryptic species. Based on molecular phylogenetics, morphology, osteology, and bioacoustics data, the species profiles of Megophrys toads in the eastern corner of Himalayas in Medog County, Tibet Autonomous Region, China was investigated. The results indicated that this small area harbored at least four Megophrys species, i.e., M. medogensis, M. pachyproctus, Megophrys zhoui sp. nov., and Megophrys yeae sp. nov., the latter two being described in this study. Additionally, the mitochondrial DNA trees nested the low-middle-elevation and high-elevation groups of M. medogensis into a monophyletic group, being in discordance with the paraphyletic relationship between them revealed in the nuclear DNA trees. The findings highlighted the underestimated biodiversity in Himalayas, and further indicated that the Megophrys toads here have been probably experienced complicated evolutionary history, for example, introgression between clades or incomplete lineage sorting and niche divergences in microhabitats. Anyway, it is urgent for us to explore the problems because these toads are suffering from increasing threats from human activities and climatic changes.

7.
Front Zool ; 17: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062031

RESUMO

Background: Metamorphic climax is the crucial stage of amphibian metamorphosis responsible for the morphological and functional changes necessary for transition to a terrestrial habitat. This developmental period is sensitive to environmental changes and pollution. Understanding its metabolic basis and requirements is significant for ecological and toxicological research. Rana omeimontis tadpoles are a useful model for investigating this stage as their liver is involved in both metabolic regulation and fat storage. Results: We used a combined approach of transcriptomics and metabolomics to study the metabolic reorganization during natural and T3-driven metamorphic climax in the liver and tail of Rana omeimontis tadpoles. The metabolic flux from the apoptotic tail replaced hepatic fat storage as metabolic fuel, resulting in increased hepatic amino acid and fat levels. In the liver, amino acid catabolism (transamination and urea cycle) was upregulated along with energy metabolism (TCA cycle and oxidative phosphorylation), while the carbohydrate and lipid catabolism (glycolysis, pentose phosphate pathway (PPP), and ß-oxidation) decreased. The hepatic glycogen phosphorylation and gluconeogenesis were upregulated, and the carbohydrate flux was used for synthesis of glycan units (e.g., UDP-glucuronate). In the tail, glycolysis, ß-oxidation, and transamination were all downregulated, accompanied by synchronous downregulation of energy production and consumption. Glycogenolysis was maintained in the tail, and the carbohydrate flux likely flowed into both PPP and the synthesis of glycan units (e.g., UDP-glucuronate and UDP-glucosamine). Fatty acid elongation and desaturation, as well as the synthesis of bioactive lipid (e.g., prostaglandins) were encouraged in the tail during metamorphic climax. Protein synthesis was downregulated in both the liver and tail. The significance of these metabolic adjustments and their potential regulation mechanism are discussed. Conclusion: The energic strategy and anabolic requirements during metamorphic climax were revealed at the molecular level. Amino acid made an increased contribution to energy metabolism during metamorphic climax. Carbohydrate anabolism was essential for the body construction of the froglets. The tail was critical in anabolism including synthesizing bioactive metabolites. These findings increase our understanding of amphibian metamorphosis and provide background information for ecological, evolutionary, conservation, and developmental studies of amphibians.

8.
Can Respir J ; 2020: 2379814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082890

RESUMO

Background: Tracheal stenosis is able to lead to airway obstruction. Objective: To evaluate the efficacy and safety profile of Montgomery T-tube implantation in patients with tracheal stenosis. Methods: Fifty-two patients with tracheal stenosis diagnosed between 2016 and 2019 were included in this retrospective cohort study. The patients were divided into observation group (n = 25 cases) and control group (n = 27). The therapeutic effect, arterial blood gas analysis, arterial oxygen partial pressure (PaO2), arterial carbon dioxide partial pressure (PaCO2), shortness of breath score, airway diameter change, dyspnea score, quality of life, and safety were compared between the two groups before and after treatment. Results: The therapeutic effect of the observation group gained better results than that of the control group (84.00% vs. 62.96%). One week after operation, the pH value, SaO2, PaCO2, shortness of breath score, airway diameter change, dyspnea score, life quality, and incidence of postoperative complications in the observation group exerted better results as compared to the control group. Conclusion: The implantation of Montgomery T-tube has effective function in terms of improving the symptoms of dyspnea and the life quality of patients with safety profile in patients harboring tracheal stenosis.

9.
J Therm Biol ; 92: 102653, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888558

RESUMO

Understanding the thermal ecology of active amphibians, as well as its relationship with habitat and environmental features, is a central theme in ecology. However, this topic has been poorly studied in eastern Himalaya, which is a global biodiversity hotspot. To bridge this gap, we investigated how the body temperatures of active amphibians varied along an elevation gradient in the Arun and Tamor River catchments in eastern Nepal Himalaya in the present study. Amphibian assemblages were sampled from May to July in both 2014 and 2015 using nocturnal time-constrained visual encounter surveys, and the body temperature of each individual was directly measured using a digital infrared thermometer in the field. A combination of linear regression and hierarchical partitioning analyses was used to determine the effects of elevation and environmental variables on the body temperatures of active amphibians. In total, the body temperatures of 599 amphibian individuals belonging to 28 species from six families were recorded. Our results indicated that amphibian body temperature exhibited monotonically declining trends with increasing elevations in eastern Nepal Himalaya. Interestingly, this tread was much more pronounced in subtropical (lowland) areas than in warm and cool temperate regions. Inter- and intraspecies variations in body temperature were large, which can be attributed to distinct habitat utilization among species and the change in vegetation cover in different bioclimatic zones. Among all environmental variables, substrate temperature and water temperature were the best predictors of the amphibian body temperature. Overall, this study revealed amphibian body temperature patterns along an elevation gradient in eastern Nepal Himalaya, which were principally driven by temperature-related environmental factors. We believe our results can provide important information on amphibian physiological traits, which may help ecologists predict their responses to future climate change and formulate protection strategies.

10.
Iran J Kidney Dis ; 14(5): 418, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32943599

RESUMO

No Abstract.

11.
J Anat ; 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964448

RESUMO

Hynobiidae are a clade of salamanders that diverged early within the crown radiation and that retain a considerable number of features plesiomorphic for the group. Their evolutionary history is informed by a fossil record that extends to the Middle Jurassic Bathonian time. Our understanding of the evolution within the total group of Hynobiidae has benefited considerably from recent discoveries of stem hynobiids but is constrained by inadequate anatomical knowledge of some extant forms. Pseudohynobius is a derived hynobiid clade consisting of five to seven extant species living endemic to southwestern China. Although this clade has been recognized for over 37 years, osteological details of these extant hynobiids remain elusive, which undoubtedly has contributed to taxonomic controversies over the hynobiid complex Liua-Protohynobius-Pseudohynobius. Here we provide a bone-by-bone study of the cranium in the five extant species of Pseudohynobius (Ps. flavomaculatus, Ps. guizhouensis, Ps. jinfo, Ps. kuankuoshuiensis and Ps. shuichengensis) based on x-ray computer tomography data for 18 specimens. Our results indicate that the cranium in each of these species has a combination of differences in morphology, proportions and articulation patterns in both dermal and endochondral bones. Our study establishes a range of intraspecific differences that will serve as organizing hypotheses for future studies as more extensive collections of these species become available. Morphological features in the cranium for terrestrial ecological adaptation in Hynobiidae are summarized. Based on the results, we also discuss the evolution and development of several potential synapomorphies of Hynobiidae, including features of the orbitosphenoid and articular.

12.
Sci Total Environ ; 738: 140269, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806366

RESUMO

The niche divergence and potential climate change-induced loss of evolutionarily significant units (ESUs) of flagship amphibian species in China, the Chinese giant salamander clade, were investigated. We tested niche-related ecological hypotheses and identified suitable habitats that are essential for the conservation of ESUs in response to future climate change according to ecological niche models (ENMs). We predicted the localized habitat loss crisis of ESUs induced by global climate heating using the predicted climate derived from two representative concentration pathway (RCP) scenarios 2.6 and 8.5, respectively. In our study, a niche conservatism pattern was found between the two distinctive northern and southern ESUs with sufficient distributional records, but their niches were not equivalent. Furthermore, there was neither abrupt environmental change in nor remarkable biogeographic barriers between the suitable habitats of the species, as indicated by random linear, blob and ribbon range-breaking tests. Under the low-emission scenario RCP2.6, the northern ESU had a moderate loss of suitable range, while the southern ESU had range expansion in the 2070s. The climatic velocities were low in the ranges of both ESUs. However, under the high-emission scenario RCP8.5, the climatic velocities were found to become larger in the suitable ranges of both ESUs. Moreover, the northern ESU had severe habitat loss, bringing it to the edge of extinction, while the southern ESU also had intensified range loss. Considering this, climatic velocity can be an effective indicator of range loss. We argued conclusively that conservation prioritization of ESUs should effectively take into account the underlying geographic and ecological mechanisms driving the speciation process. The conservation of ESUs should consider the conservation of both evolutionary potential and ecological adaptation capacity of each lineage. The present study provided practical guidelines for repopulation programs for endangered species and the conservation of evolutionary diversity.


Assuntos
Anfíbios , Ecossistema , Animais , China , Mudança Climática , Espécies em Perigo de Extinção
13.
Curr Zool ; 66(4): 383-392, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32617086

RESUMO

Understanding how ecological processes affect phenotypic evolution has been and continues to be an important goal of ecology and evolutionary biology. Interspecific competition for resources can be a selective force driving phenotypic differentiation that reduces competition among sympatric species (character divergence), enabling closely-related species to coexist. However, although patterns of character divergence are well documented in both empirical and theoretical researches, how local adaptation to abiotic environment affects trait evolution in the face of interspecific competition is less known. Here, we investigate how patterns in morphological traits of 2 parapatric frog species, Feirana quadranus and F. taihangnica, vary among allopatric and sympatric regions using range-wide data derived from extensive field surveys. Feirana quadranus was overall larger than F. taihangnica in body size (i.e., snout-vent length [SVL]), and the difference between SVL of both species in sympatry was larger than that in allopatry. From allopatry to sympatry, the 2 species diverged in foot and hand traits, but converged in eye size and interorbital span, even when we controlled for the effects of geographic gradients. Sympatric divergence in SVL, hand and foot traits is likely acting as a case of evolutionary shift caused by interspecific competition. In contrast, sympatric convergence of eye-related traits may derive at least partly from adaptation to local environments. These results imply the relative roles of interspecific competition and local adaptation in shaping phenotypic diversification. Our findings illustrate how traits evolve in parapatric species pair due to sympatric divergent and convergent evolution. It thus provides insights into understanding underlying evolutionary processes of parapatric species, that is, competition and local adaptation.

14.
mSystems ; 5(4)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723798

RESUMO

Seasonal dynamics in symbiotic microbiomes have been investigated in a number of vertebrates and are mainly caused by changes in the diet (in the gut microbiome) or the living environment (in the skin microbiome). Most amphibian microbiome studies focus on the skin, whereas internal microbiome structure and dynamics are often overlooked. The present study investigated the seasonal dynamics in three types of symbiotic microbiomes (the skin, stomach, and gut) across four wild frog species, belonging to different families, in May and October. The frogs harbored more water source microbes in May than in October. On the contrary, the frogs harbored more soil source microbes in October than in May. The frog species investigated tend to live in a water environment in May to maintain body surface humidity at high environmental temperatures and to breed. In October, these four species prefer to live on the land, as the environmental temperature decreases, to prepare for hibernation in caves or under stones. Thus, seasonal changes in the wild amphibian symbiotic microbiome may be caused by the difference in microbe transmission from their living environment due to specific behaviors. This study demonstrated that the behavior and living environment of wild amphibians shape their symbiotic microbiome externally (on the skin) and internally (in the stomach and gut). We revealed the potential association between specific behaviors in poikilothermic animals and host symbiotic microbiomes.IMPORTANCE Understanding the interactions between host behavior and microbiome dynamics remains an outstanding priority in the field of microbial ecology. Here, we provide the reader with a simple example of how the behavior and living environment of wild amphibians shape their symbiotic microbiome externally (on the skin) and internally (in the stomach and gut).

15.
Front Pharmacol ; 11: 483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390839

RESUMO

Nonalcoholic steatohepatitis (NASH) is a liver disease defined as the dynamic condition of hepatocellular injury during the progress of nonalcoholic fatty liver disease (NAFLD). Total flavonoids from the dry and immature fruits of Citrus Paradisi cv.Changshanhuyou (accepted species name: Citrus × aurantium L) (Qu Zhi Qiao, QZQ) are purified and named TFCH. This study was purposed to investigate and analyze the effect of TFCH on NASH model through Nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements pathway in vivo and in vitro. In vivo study was performed using male C57BL/6 mice fed with high fat diet 16 weeks for NASH model. After 7-week modeling, mice in TFCH-treated group were daily treated with intragastric administration of TFCH at 25 mg/kg, 50 mg/kg, 200 mg/kg, respectively, for successive 8 weeks. Histopathological and immunohistochemical analyses were conducted for evaluating severity of NASH-mice model and the effect of TFCH treatment. In vitro experiment was performed by using human LX-2 cells and cultured with Free fatty acid (FFA) (Oleic acid: palmitic: l: 0.5 mmol/L) for 24 h and then treated with TFCH at different concentrations (0, 25, 50, 100, 200 mg/ml) for 6 h,12 h, and 24 h. Anti-apoptosis effect of TFCH on LX-2 cells cultured with FFA was revealed by the CCK-8 assay. Lipid parameters and oxidative stress markers were measured in vivo and in vitro, results showed that TFCH dose-dependently and greatly increased the antioxidant ability and reduced the oxidative damage in NASH model. The protein expression of Nrf2 and the downstream target genes in mice liver and human LX-2 cells were tested by Western blot analysis to investigate the possible molecular mechanisms of TFCH. Our results indicated that TFCH up-regulated protein expression of these genes and have the significant influence in activating the Nrf2-ARE signaling pathway. This study shows Nrf2-ARE signaling pathway may provide novel therapeutic opportunities for NASH therapy in the future.

16.
Zookeys ; 929: 93-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377150

RESUMO

The toad genus Oreolalax is widely distributed in southwest China and northern Vietnam. A new species of the genus is described from Sichuan Province, China. Phylogenetic analyses based on the mitochondrial 12S rRNA and 16S rRNA gene sequences supported the new species as an independent clade clustered into the clade also containing O. nanjiangensis and O. chuanbeiensis. The new species can be distinguished from its congeners by a combination of the following characters: body size moderate (SVL 51.2-64.2 mm in males); head broad; tympanum hidden; interorbital region with dark triangular pattern; belly with marbling; male lacking spines on lip margin; spiny patches on chest small with thick sparse spines in male; nuptial spines thick and sparse; tibio-tarsal articulation reaching beyond nostril when leg stretched forward; toe webbing at base.

18.
Front Microbiol ; 11: 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194513

RESUMO

There are many examples of symbiotic and reciprocal relationships in ecological systems; animal gut microbiome-host interactions are one such kind of bidirectional and complex relationship. Here, we utilized several approaches (16S rRNA gene sequencing, metagenomics, and transcriptomics) to explore potential gut microbiome-host interactions accompanying the development of gastrointestinal complexity and a dietary shift from metamorphosis to maturity in ornamented pygmy frogs (Microhyla fissipes). We identified the possible coevolution between a particular gut microbial group (increased putative fat-digesting Erysipelotrichaceae and chitin-digesting Bacteroides and Ruminococcaceae) and the host dietary shift [from herbivore to insectivore (high proportion of dietary chitin and fat)] during metamorphosis. We also found that the remodeling and complexity of the gastrointestinal system during metamorphosis might have a profound effect on the gut microbial community (decreasing facultative anaerobic Proteobacteria and increasing anaerobic Firmicutes) and its putative oxygen-related phenotypes. Moreover, a high proportion of chitin-digesting bacteria and increased carbohydrate metabolism by gut microbiomes at the climax of metamorphosis would help the frog's nutrition and energy needs during metamorphosis and development. Considering the increased expression of particular host genes (e.g., chitinase) in juvenile frogs, we speculate that host plays an important role in amphibian metamorphosis, and their symbiotic gut microbiome may help in this process by providing the nutrition and energy needs. We provide this basic information for the amphibian conservation and managements.

19.
DNA Cell Biol ; 39(4): 579-598, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32069124

RESUMO

The genus Schizothorax is one of the most diverse groups of schizothoracine fish. Many species within this genus possess highly similar morphological characters and are very difficult to be identified accurately only based on morphology. The present study aims to test the effectiveness of mitochondrial cytochrome c oxidase subunit I (COI) gene and cytochrome b (Cytb) gene for discriminating the Schizothorax fish. A total of 185 individuals of 11 species for COI gene and 264 individuals of 23 species for Cytb gene were used for analyzing, respectively. According to the genetic distances, only one species based on COI gene and five species based on Cytb gene had "barcoding gaps," respectively. The tree-based analysis displayed that four species based on COI gene and six species based on Cytb gene clustered monophyletic group with strong support, respectively. The optimal threshold value of Schizothorax is 0.005 based on COI gene and 0.008 based on Cytb gene. The results of genetic similarity tests performed through online BLAST showed that 108 of 185 similarity searches succeeded in identifying conspecific sequences based on COI gene and 199 of 264 succeeded in identifying conspecific sequences based on Cytb gene. Considering greater interspecific genetic distance in Kimura 2-parameter (K2P) analysis and many clades with higher supporting values in tree-based analysis, we suggest that Cytb gene has better resolution in discrimination of Schizothorax species than COI gene. However, there are still many confused clustering relationships based on molecular data currently available. Incomplete lineage sorting, the existence of possible cryptic species and problematic morphological identification, etc. might have greatly weakened the resolution of Cytb gene in discrimination of Schizothorax species.


Assuntos
Cyprinidae/classificação , Citocromos b/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Animais , Sequência de Bases , Cyprinidae/genética , Variação Genética/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Tipagem Molecular/métodos , Análise de Sequência de DNA , Tibet
20.
Microbiologyopen ; 9(4): e1004, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045512

RESUMO

Environment has a potential effect on the animal symbiotic microbiome. Here, to study the potential relationship of the symbiotic microbiomes of wild amphibians with altitude, we collected the gut and skin samples from frogs (nine species) and the environmental samples (water and soil samples) from the Leshan Mountains (altitude: 360-410 m) and Gongga Mountains (altitude: 3340-3989 m) on the eastern edge of the Tibetan Plateau. Bufo gargarizans (Bg) samples were collected from both the Leshan and Gongga mountain regions (Bg was the only species sampled on both mountains). The DNA extracted from each sample was performed high-throughput sequencing (MiSeq) of bacterial 16S rRNA gene amplicons. High relative abundance of Caulobacteraceae and Sphingomonadaceae was found in skin samples from both Bg and the other high-altitude amphibians (nine species combined). High relative abundance of Coxiellaceae and Mycoplasmataceae was found in gut samples from both Bg and the other high-altitude amphibians. Furthermore, the alpha and beta diversities of skin and gut samples from Bg and the other amphibian species (nine species combined) were similar. In terms of the symbiotic microbial community, the low-altitude samples were less diverse and more similar to each other than the high-altitude samples were. We speculated that extreme high-altitude environments and host phylogeny may affect the amphibian microbiome. Despite the distinct microbial community differences between the skin and gut microbiomes, some functions were similar in the Bg and combined high-altitude samples. The Bg and high-altitude skin samples had higher oxidative stress tolerance and biofilm formation than the low-altitude skin samples. However, the opposite results were observed for the Bg and high-altitude gut samples. Further study is required to determine whether these characteristics favor high-altitude amphibian adaptation to extreme environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA