Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 20: 195-204, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31581068

RESUMO

As one of the most promising semiconductor oxide materials, titanium dioxide (TiO2) absorbs UV light but not visible light. To address this limitation, the introduction of Ti3+ defects represents a common strategy to render TiO2 visible-light responsive. Unfortunately, current hurdles in Ti3+ generation technologies impeded the widespread application of Ti3+ modified materials. Herein, we demonstrate a simple and mechanistically distinct approach to generating abundant surface-Ti3+ sites without leaving behind oxygen vacancy and sacrificing one-off electron donors. In particular, upon adsorption of organodiboron reagents onto TiO2 nanoparticles, spontaneous electron injection from the diboron-bound O2- site to adjacent Ti4+ site leads to an extremely stable blue surface Ti3+‒O-· complex. Notably, this defect generation protocol is also applicable to other semiconductor oxides including ZnO, SnO2, Nb2O5, and In2O3. Furthermore, the as-prepared photoelectronic device using this strategy affords 103-fold higher visible light response and the fabricated perovskite solar cell shows an enhanced performance.

2.
Inorg Chem ; 58(4): 2330-2335, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30648391

RESUMO

A mononuclear low spin ( S = 1/2) Co(II) molecule crystallized in a 4-fold symmetry is fully investigated by CW and pulsed EPR on a single crystal sample. The quantum phase memory time of the molecule around 1 µs at 5 K is direction-independent, while the Rabi oscillation frequency is anisotropic. The spin Hamiltonian analyses reveal that the anisotropic Landé factor and hyperfine tensor do not influence the anisotropy apparently when the microwave magnetic field is applied along a certain direction. It is considered that the possibly involved nuclear spin forbidden transitions may be responsible for the small distinction of Rabi frequencies in two directions.

3.
Chem Sci ; 9(2): 457-462, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30310560

RESUMO

The core-shell structure of endohedral fullerenes results in good protection of the encapsulated spin carriers from the environment. In this research, the quantum coherence behavior of the endohedral fullerene Sc3C2@C80 in CS2 solution is characterized from 5 K to room temperature. Below the critical temperature of around 140 K, the inner group is hindered, and the EPR spectrum consists of a single broad line. The spin carriers display a maximum phase memory time of 17.2(7) µs at 10 K. In the high temperature region, the inner group is mobile, and the EPR spectrum consists of 22 homogeneously broadened lines due to isotropic hyperfine coupling. The maximum phase memory time for each transition is around 139(1) ns at 200 K which allows arbitrary superposition state manipulations to be performed. This research demonstrates that Sc3C2@C80 displays temperature-crossover behaviour due to weak interaction between the Sc3C2 core and the C80 shell.

4.
Chemistry ; 24(62): 16576-16581, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30095193

RESUMO

The anisotropy of the magnetic properties of molecular magnets is a key descriptor in the search for improved magnets. Herein, it is shown how an analytical approach using single-crystal polarized neutron diffraction (PND) provides direct access to atomic magnetic susceptibility tensors. The technique was applied for the first time to two Dy-based single-molecule magnets and showed clear axial atomic susceptibility for both DyIII ions. For the triclinic system, bulk magnetization methods are not symmetry-restricted, and the experimental magnetic easy axes from both PND, angular-resolved magnetometry (ARM), and theoretical approaches all match reasonably well. ARM curves simulated from the molecular susceptibility tensor determined with PND show strong resemblance with the experimental ones. For the monoclinic compound, comparison can only be made with the theoretically calculated magnetic anisotropy, and in this case PND yields an easy-axis direction that matches that predicted by electrostatic methods. Importantly, this technique allows the determination of all elements of the magnetic susceptibility tensor and not just the easy-axis direction, as is available from electrostatic predictions. Furthermore, it has the capacity to provide each of the anisotropic magnetic susceptibility tensors for all independent magnetic ions in a molecule and thus allows studies on polynuclear complexes and compounds of higher crystalline symmetry than triclinic.

5.
Chemphyschem ; 19(22): 2972-2977, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30085398

RESUMO

Organic semiconductors for spin-based devices require long spin relaxation times. Understanding their spin relaxation mechanisms is critical to organic spintronic devices and applications for quantum information processing. However, reports on the spin relaxation mechanisms of organic conjugated molecules are rare and the research methods are also limited. Herein, we study the molecular design and spin relaxation mechanisms by systematically varying the structure of a conjugated radical. We found that solid-state relaxation times of organic materials are largely different from that in solution state. We demonstrate that substitution of a lower gyromagnetic ratio nucleus (e. g. D, Cl) on the para-position of the aryl rings in the triphenylmethyl (TM) radical can significantly improve their coherence times (Tm ). Flexible thin films based on such radicals exhibit ultra-long spin-lattice relaxation times (T1 ) up to 35.6(6) µs and Tm up to 1.08(4) µs under ambient conditions, which are among the longest values in films. More importantly, using the TM radical derivative (5CM), we observed room-temperature quantum coherence and Rabi cycles in thin film for the first time, suggesting that organic conjugated radicals have great potentials for spin-based information processing.

7.
Dalton Trans ; 47(6): 1966-1971, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29344590

RESUMO

Herein, a series of light lanthanide-based complexes, Ln(fdh)3(bpy) (Ln = CeIII, PrIII, and NdIII and fdh = 1,1,1-fluoro-5,5-dimethyl-hexa-2,4-dione, bpy = 2,2'-bipyridine), were synthesized and characterized. The angle-resolved magnetometry studies reveal that the three complexes have Ising-type anisotropy, and the magnetic easy axes orient along the negative charge dense direction in the crystal field. The results were consistent with the ab initio calculations. This research demonstrates that the crystal field electron density distribution determines the anisotropy of light lanthanides.

8.
J Am Chem Soc ; 140(3): 1123-1130, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29272584

RESUMO

An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M2@C79N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd2@C79N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (JGd-Rad = 350 ± 20 cm-1) has been unambiguously validated by magnetic susceptibility experiments. Gd2@C79N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 µs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

9.
Chem Sci ; 9(46): 8731-8737, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30627393

RESUMO

Herein we report a general electrochemical strategy for the Sandmeyer reaction. Using electricity as the driving force, this protocol employs a simple and inexpensive halogen source, such as NBS, CBrCl3, CH2I2, CCl4, LiCl and NaBr for the halogenation of aryl diazonium salts. In addition, we found that these electrochemical reactions could be performed using anilines as the starting material in a one-pot fashion. Furthermore, the practicality of this process was demonstrated in the multigram scale synthesis of aryl halides using highly inexpensive graphite as the electrode. A series of detailed mechanism studies have been performed, including radical clock and radical scavenger study, cyclic voltammetry analysis and in situ electron paramagnetic resonance (EPR) analysis.

10.
Dalton Trans ; 46(23): 7408-7411, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28561112

RESUMO

Three penta-coordinate Co2+ complexes with halide substitutes were synthesized. Their zero-field splitting (ZFS) parameters were determined by fitting dc magnetic data and far-infrared magneto-transmission spectra. The results gave an unusual case that complexes with heavier halide atoms bear smaller ZFS parameters.

11.
Inorg Chem ; 56(9): 4911-4917, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414438

RESUMO

Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

12.
Inorg Chem ; 56(5): 2417-2425, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218836

RESUMO

We report three dinuclear cobalt(II) complexes, [Co(L)Cl2]2 (L = bpy, mbpy, and dmpbt), that are bridged solely by chloride ions. High-field electron paramagnetic resonance and magnetometric measurements were applied to investigate the magnetic intramolecular Co-Co interactions. Simulation results based on the multispin model reveal that the complexes are weakly ferromagnetically coupled and that the isotropic exchange coupling constants differ slightly for the three complexes. Moreover, the competing effects of zero-field splitting and magnetic coupling on the temperature-dependent magnetic susceptibility were analyzed.

13.
J Am Chem Soc ; 139(1): 373-380, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936686

RESUMO

The pursuit of single-molecule magnets (SMMs) with better performance urges new molecular design that can endow SMMs larger magnetic anisotropy. Here we report that two-coordinate cobalt imido complexes featuring highly covalent Co═N cores exhibit slow relaxation of magnetization under zero direct-current field with a high effective relaxation barrier up to 413 cm-1, a new record for transition metal based SMMs. Two theoretical models were carried out to investigate the anisotropy of these complexes: single-ion model and Co-N coupling model. The former indicates that the pseudo linear ligand field helps to preserve the first-order orbital momentum, while the latter suggests that the strong ferromagnetic interaction between Co and N makes the [CoN]+ fragment a pseudo single paramagnetic ion, and that the excellent performance of these cobalt imido SMMs is attributed to the inherent large magnetic anisotropy of the [CoN]+ core with |MJ = ± 7/2⟩ ground Kramers doublet.

14.
Inorg Chem ; 56(2): 697-700, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28004926

RESUMO

Two pseudotetrahedral cobalt(II) complexes exhibiting slow magnetic relaxation under an applied direct-current field are investigated. The weak easy-plane anisotropy is accurately determined by high-field/high-frequency electron paramagnetic resonance spectroscopy as D = 2.57 cm-1 and E = 0.82 cm-1 for 1 and D = 5.56 cm-1 and E = 1.05 cm-1 for 2. In addition, hysteresis loops are observed for the two compounds at very low temperatures.

15.
Acc Chem Res ; 49(11): 2381-2389, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768294

RESUMO

Single-molecule magnets (SMMs) can retain their magnetization status preferentially after removal of the magnetic field below a certain temperature. The unique property, magnetic bistable status, enables the molecule-scale SMM to become the next-generation high-density information storage medium. SMMs' new applications are also involved in high-speed quantum computation and molecular spintronics. The development of coordination chemistry, especially in transition metal (3d) and lanthanide (4f) complexes, diversifies SMMs by introducing new ones. In both 3d and 4f SMMs, the ligands play a fundamental role in determining the SMMs' magnetic properties. The strategies for rationally designing and synthesizing high-performance SMMs require a comprehensive understanding of the effects of a crystal field. In this Account, we focus mainly on the magneto-structural correlations of 4f or 3d single-ion magnets (SIMs), within which there is only one spin carrier. These one-spin carrier complexes benefit from getting rid of exchange interactions and relatively large distances of magnetic centers in the lattice, providing the ease to construct high-performance SIMs from the crystal field perspective. We will briefly introduce the crystal field approach for 4f or 3d complexes and then the magnetic anisotropy analysis via the displaced-charge electrostatic model. This idea has been proposed for years, and the related work is also highlighted. The angular-resolved magnetometry method, predominating in determining the magnetic anisotropic axes direction, is discussed. We also give a brief introduction of the quantum chemistry ab initio method, which has shown to be powerful in understanding the magnetic anisotropy and low-lying states. In the constructing and characterizing part, we give an overview of the SIMs based on lanthanide and transition ions, reported by our group in the past 5 years. In the 4f-SIMs survey, we discuss how ß-diketonates and cyclomultienes, and their combination, as ligands to influence magnetic anisotropy and provide some suggestion on designing SIMs based on different lanthanide ions. In the 3d-SIMs survey, we fully discuss the correlation between zero-field-splitting parameter D and molecular geometrical angle parameters. Finally, we lay out the challenges and further development of SIMs. We hope the understanding we provide about single-ion magnetic properties will be helpful to design high-performance SMMs.

16.
Chemistry ; 22(14): 4704-8, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26777067

RESUMO

In recent years, plentiful lanthanide-based (Tb(III) , Dy(III) , and Er(III) ) single-molecule magnets (SMMs) were studied, while examples of other lanthanides, for example, Tm(III) are still unknown. Herein, for the first time, we show that by rationally manipulating the coordination sphere, two thulium compounds, 1[(Tp)Tm(COT)] and 2[(Tp*)Tm(COT)] (Tp=hydrotris(1-pyrazolyl)borate; COT=cyclooctatetraenide; Tp*=hydrotris(3,5-dimethyl-1-pyrazolyl)borate), can adopt the structure of non-Kramers SMMs and exhibit their behaviors. Dynamic magnetic studies indicated that both compounds showed slow magnetic relaxation under dc field and a relatively high effective energy barrier (111 K for 1, 46 K for 2). Magnetic diluted 1 a[(Tp)Tm0.05 Y0.95 (COT)] and 2 a[(Tp*)Tm0.05 Y0.95 (COT)] even exhibited magnetic relaxation under zero dc field. Relativistic ab initio calculations combined with single-crystal angular-resolved magnetometry measurements revealed the strong easy axis anisotropy and nearly degenerated ground doublet states. The comparison of 1 and 2 highlights the importance of local symmetry for obtaining Tm SMMs.

17.
Chem Sci ; 7(8): 5020-5031, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155153

RESUMO

A series of compounds [ADyL4]·[solvent] composed of a dysprosium(iii) ion coordinated by four chelated naphthyridine-like ligands (L = 4-hydroxy-8-methyl-1,5-naphthyridine-3-carbonitrile) and an alkali metal ion (A = Na, K, Rb, Cs) were synthesized and characterized. They behave as single-molecule magnets under a zero dc field with an effective energy barrier of around 95 cm-1. Meanwhile, the main part, [ADyL4], of these SMMs is thermostable and sublimable. The geometric structures of three sublimed compounds are identical to the original ones without solvents, which is confirmed by X-ray diffraction using single crystal and powder samples. The static and dynamic magnetic properties remain unchanged before and after sublimation. Luminescence measurements at 5-77 K were performed to verify the energy gap between low-lying states and to understand the pathway of the thermal relaxation process of magnetization, as well as to inspect the tiny variation in magnetic sublevels for the ground term of Dy(iii). The photoluminescence spectra under a magnetic field (0-36 T) for the Dy-SMMs are investigated for the first time. The energy splitting of the two lowest sublevels of the ground term 6H15/2 of Dy(iii) are analyzed using the Zeeman formula.

18.
Chem Sci ; 7(1): 684-691, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791111

RESUMO

A series of mononuclear lanthanide Zn-Dy-Zn type single-molecule magnets (SMMs) were synthesized and magnetically characterized. The four molecules ([Zn2(L1)2DyCl3]·2H2O (1), [Zn2(L1)2Dy(MeOH)Br3]·3H2O (2), [Zn2(L1)2Dy(H2O)Br2]·[ZnBr4]0.5 (3) and [Zn2(L2)2DyCl3]·2H2O (4)) all display remarkable magnetic relaxation behavior with a relatively high energy barrier and hysteresis temperature, despite possessing a low local geometry symmetry of the center Dy(iii) ions. Ab initio studies revealed that the symmetry of the charge distribution around the Dy(iii) ion is the key factor to determine the relaxation of the SMMs. The four complexes orient their magnetic easy axes along the negative charge-dense direction of the first coordination sphere. The entire molecular magnetic anisotropy was therefore controlled by a single substituent atom in the hard plane which consists of five coordination atoms (perpendicular to the easy axis), and the lower charge distribution on this hard plane in combination with the nearly coplanarity of the five coordination atoms ultimately lead to the prominent magnetic slow relaxation. This offers an efficient and rational method to improve the dynamic magnetic relaxation of the mononuclear lanthanide SMMs that usually possess a low local geometry symmetry around the lanthanide(iii) center.

19.
J Am Chem Soc ; 137(40): 12923-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352187

RESUMO

The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

20.
Chem Commun (Camb) ; 51(52): 10373-6, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-25990868

RESUMO

Magneto-structural relationships were studied experimentally and theoretically for two enantiomorphic tetranuclear [CuTb]2 SMMs. For the first time, the determination of the magnetic anisotropy axis of an individual magnetic ion, Tb(3+), was achieved in a polynuclear Tb(3+)-based SMM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA