Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 49: 157-171, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31678002

RESUMO

BACKGROUND: Liver is one of the most preferred destinations of distant metastasis in gastric cancer (GC). As effective treatment is still limited, the prognosis of GC patients bearing liver metastasis is poor. We filter out lysyl oxidase (LOX) to study its function in the tumor microenvironment (TME) and seek for potential therapeutic targets. METHODS: Transcription analysis on 6 cases of liver metastasis of GC patients with respective paired primary tumors and adjacent normal livers was performed. The filtration out of LOX was done using 5 datasets. 69 GC liver metastasis tissues were utilized to perform immunohistochemistry (IHC) and analyze prognosis. Computed Tomography (CT) combined 3D organ reconstruction bioluminescence imaging was performed to precisely evaluate the metastatic tumor burden on liver of intrasplenic injection mouse model. Human and mouse cancer associated fibroblasts (CAFs) in liver metastasis were separated to culture to study the interaction of LOX and TGF-ß1. Patients-derived xenograft (PDX) model was established using liver metastasis of patients to evaluate the therapeutic value of LOX inhibitor ß-aminopropionitrile (BAPN). RESULTS: CAFs-derived LOX at liver metastatic niche of GC promotes niche formation and outgrowth thus predicts poor prognosis. Meanwhile tumor cells in niche secrete TGF-ß1 to nourish CAFs and stimulate them to produce more LOX in turn. The mechanism involved in LOX-mediated proliferation facilitation is enhancement of Warburg effect. The inhibitor of LOX, BPAN could hamper the effect brought by LOX in vivo and in vitro. INTERPRETATION: Our study has unveiled a positive feedback loop between CAFs and tumor cells in liver metastasis niche of GC. The core molecule is LOX which facilitates Warburg effect. Targeting LOX with its inhibitor BAPN might serve as a potential therapeutic strategy. FUND: This research was supported by the National Natural Science Foundation of China (31872740), the 100-member plan of the Shanghai Municipal Commission of Health and Family Planning (2017BR043), Shanghai Science and Technology Commission Project(17ZR1416800), Renji Hospital Training Fund (PYMDT-003, PYIII-17-015), National Natural Science Foundation of China (81672358), the Shanghai Municipal Education Commission-Gao feng Clinical MedicineGrant Support (20181708), Program of Shanghai Academic/Technology Research Leader(19XD1403400), Science and Technology Commission of Shanghai Municipality (18410721000), Shanghai Municipal Health Bureau (2018BR32), China Postdoctoral Science Foundation (2018M640403), National Natural Science Foundation of China (81701945) and Youth project of Shanghai Municipal Health Commission(20164Y0045).

2.
Oncogene ; 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527667

RESUMO

Neurotransmitters are conventionally viewed as nerve-secreted substances that mediate the stimulatory or inhibitory neuronal functions through binding to their respective receptors. In the past decades, many novel discoveries come to light elucidating the regulatory roles of neurotransmitters in the physiological and pathological functions of tissues and organs. Notably, emerging data suggest that cancer cells take advantage of the neurotransmitters-initiated signaling pathway to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can affect immune cells and endothelial cells in the tumor microenvironment to promote tumor progression. Therefore, a better understanding of the mechanisms underlying neurotransmitter function in tumorigenesis, angiogenesis, and inflammation is expected to enable the development of the next generation of antitumor therapies. Here, we summarize the recent important studies on the different neurotransmitters, their respective receptors, target cells, as well as pro/antitumor activity of specific neurotransmitter/receptor axis in cancers and provide perspectives and insights regarding the rationales and strategies of targeting neurotransmitter system to cancer treatment.

3.
J Exp Clin Cancer Res ; 38(1): 214, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118109

RESUMO

BACKGROUND: Gastric cancer is one of the deadliest malignant tumours, with a high incidence in China, and is regulated by aberrantly overexpressed oncogenes. However, existing therapies are insufficient to meet patients' needs; thus, the identification of additional therapeutic targets and exploration of the underlying mechanism are urgently needed. GPAA1 is the subunit of the GPI transamidase that transfers the GPI anchor to proteins within the ER. The functional impacts of increased expression levels of GPAA1 in human cancers are not well understood. METHODS: Data mining was performed to determine the pattern of GPAA1 expression and the reason for its overexpression in tumour and adjacent normal tissues. In vitro and in vivo experiments evaluating proliferation and metastasis were performed using cells with stable deletion or overexpression of GPAA1. A tissue microarray established by the Ren Ji Hospital was utilized to analyse the expression profile of GPAA1 and its correlation with prognosis. Western blotting, an in situ proximity ligation assay, and co-immunoprecipitation (co-IP) were performed to reveal the mechanism of GPAA1 in gastric cancer. RESULTS: GPAA1 was a markedly upregulated oncogene in gastric cancer due to chromosomal amplification. GPAA1 overexpression was confirmed in specimens from the Ren Ji cohort and was associated with ERBB2 expression, predicting unsatisfactory patient outcomes. Aberrantly upregulated GPAA1 dramatically contributed to cancer growth and metastasis in in vitro and in vivo studies. Mechanistically, GPAA1 enhanced the levels of metastasis-associated GPI-anchored proteins to increase tumour metastasis and intensified lipid raft formation, which consequently promoted the interaction between EGFR and ERBB2 as well as downstream pro-proliferative signalling. CONCLUSIONS: GPAA1 facilitates the expression of cancer-related GPI-anchored proteins and supplies a more robust platform-the lipid raft-to promote EGFR-ERBB2 dimerization, which further contributes to tumour growth and metastasis and to cancer progression. GPAA1 could be a promising diagnostic biomarker and therapeutic target for gastric cancer.

4.
Chin Clin Oncol ; 8(2): 18, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31070038

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most dangerous cancers, and the overall 5-year survival rate is only 8%. The microenvironment of PDAC, which promotes tumorigenesis, disease development and metastasis, consists of fibroblasts, immune cells, pancreatic stellate cells (PaSCs), adipocytes and extracellular matrix (ECM). Because the microenvironment is a part of the tumor, it is also an important target for PDAC treatment. Several therapeutic regimens targeting PDAC microenvironment factors or cells have been investigated, but the treatment effects were poor. More research on the physiological and pathological mechanisms and clinical treatment of PDAC is necessary.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia
5.
Gut ; 68(11): 1994-2006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30826748

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Macrófagos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
6.
Clin Cancer Res ; 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420446

RESUMO

PURPOSE: Extensive research has reported that the tumor microenvironment components play crucial roles in tumor progression. Thus, blocking the supports of tumor microenvironment is a promising approach to prevent cancer progression. We aimed to determine whether blocking extracellular ATP-P2RY2 axis could be a potential therapeutic approach for PDAC treatment. EXPERIMENTAL DESIGN: Expression of P2RY2 was determined in 264 human PDAC samples, and correlated to patient survival. P2RY2 was inhibited in human PDAC cell lines by antagonist and shRNA, respectively, and cell viability, clonogenicity and glycolysis were determined. RNA sequencing of PDAC cell line was applied to reveal underlying molecular mechanisms. Multiple PDAC mouse models were used to assess the effects of the P2RY2 inhibition on PDAC progression. RESULTS: P2RY2 was upregulated and associated with poor prognosis in PDAC. Activated P2RY2 by increased extracellular ATP in tumor microenvironment promoted PDAC growth and glycolysis. Further studies showed that the agonist-activated P2RY2 triggered PI3K/AKT-mTOR signaling by crosstalk with PDGFR mediated by Yes1, resulting in elevating expression of c-Myc and HIF1a, which subsequently enhanced cancer cell glycolysis. Genetic and pharmacological inhibition of P2RY2 impaired tumor cell growth in subcutaneous and orthotopic xenograft model, as well as delayed tumor progression in inflammation-driven PDAC model. Additionally, synergy was observed when AR-C118925XX, the selective antagonist of P2RY2 receptor, and gemcitabine were combined, resulting in prolonged survival of xenografted PDAC mice. CONCLUSIONS: These findings revealed the roles of the P2RY2 in PDAC metabolic reprogramming, suggesting that P2RY2 might be a potential metabolic therapeutic target for PDAC.

7.
Gastroenterology ; 155(4): 1233-1249.e22, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30009820

RESUMO

BACKGROUND & AIMS: Agents designed to block or alter cytokinesis can kill or stop proliferation of cancer cells. We aimed to identify cytokinesis-related proteins that are overexpressed in hepatocellular carcinoma (HCC) cells and might be targeted to slow liver tumor growth. METHODS: Using the Oncomine database, we compared the gene expression patterns in 16 cancer microarray datasets and assessed gene enrichment sets using gene ontology. We performed immunohistochemical analysis of an HCC tissue microarray and identified changes in protein levels that are associated with patient survival times. Candidate genes were overexpressed or knocked down with small hairpin RNAs in SMMC7721, MHCC97H, or HCCLM3 cell lines; we analyzed their proliferation, viability, and clone-formation ability and their growth as subcutaneous or orthotopic xenograft tumors in mice. We performed microarray analyses to identify alterations in signaling pathways and immunoblot and immunofluorescence assays to detect and localize proteins in tissues. Yeast 2-hybrid screens and mass spectrometry combined with co-immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation and proximity ligation assays. Chromatin immunoprecipitation, promoter luciferase activity, and quantitative real-time polymerase chain reaction analyses were used to identify factors that regulate transcription of specific genes. RESULTS: The genes that were most frequently overexpressed in different types of cancer cells were involved in cell division processes. We identified 3 cytokinesis-regulatory proteins among the 10 genes most frequently overexpressed by all cancer cell types. Rac GTPase activating protein 1 (RACGAP1) was the cytokinesis-regulatory protein that was most highly overexpressed in multiple cancers. Increased expression of RACGAP1 in tumor tissues was associated with shorter survival times of patients with cancer. Knockdown of RACGAP1 in HCC cells induced cytokinesis failure and cell apoptosis. In microarray analyses, we found knockdown of RACGAP1 in SMMC7721 cells to reduce expression of genes regulated by yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1 or TAZ). RACGAP1 reduced activation of the Hippo pathway in HCC cells by increasing activity of RhoA and polymerization of filamentous actin. Knockdown of YAP reduced phosphorylation of RACGAP1 and redistribution at the anaphase central spindle. We found transcription of the translocated promoter region, nuclear basket protein (TPR) to be regulated by YAP and coordinately expressed with RACGAP1 to promote proliferation of HCC cells. TPR redistributed upon nuclear envelope breakdown and formed complexes with RACGAP1 during mitosis. Knockdown of TPR in HCC cells reduced phosphorylation of RACGAP1 by aurora kinase B and impaired their redistribution at the central spindle during cytokinesis. STAT3 activated transcription of RACGAP in HCC cells. CONCLUSIONS: In an analysis of gene expression patterns of multiple tumor types, we found RACGAP1 to be frequently overexpressed, which is associated with shorter survival times of patients. RACGAP1 promotes proliferation of HCC cells by reducing activation of the Hippo and YAP pathways and promoting cytokinesis in coordination with TPR.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Citocinese , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Carga Tumoral , Regulação para Cima , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Biochem Biophys Res Commun ; 499(3): 584-593, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621546

RESUMO

Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Calicreínas/genética , Neoplasias Pancreáticas/genética , Regulação para Cima/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Calicreínas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Transdução de Sinais , Quinases da Família src/metabolismo
9.
Cancer Res ; 78(9): 2305-2317, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440144

RESUMO

Tumor-associated macrophages (TAM) represent key regulators of the complex interplay between cancer and the immune microenvironment. Matricellular protein SPON2 is essential for recruiting lymphocytes and initiating immune responses. Recent studies have shown that SPON2 has complicated roles in cell migration and tumor progression. Here we report that, in the tumor microenvironment of hepatocellular carcinoma (HCC), SPON2 not only promotes infiltration of M1-like macrophages but also inhibits tumor metastasis. SPON2-α4ß1 integrin signaling activated RhoA and Rac1, increased F-actin reorganization, and promoted M1-like macrophage recruitment. F-Actin accumulation also activated the Hippo pathway by suppressing LATS1 phosphorylation, promoting YAP nuclear translocation, and initiating downstream gene expression. However, SPON2-α5ß1 integrin signaling inactivated RhoA and prevented F-actin assembly, thereby inhibiting HCC cell migration; the Hippo pathway was not noticeably involved in SPON2-mediated HCC cell migration. In HCC patients, SPON2 levels correlated positively with prognosis. Overall, our findings provide evidence that SPON2 is a critical factor in mediating the immune response against tumor cell growth and migration in HCC.Significance: Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/9/2305/F1.large.jpg Cancer Res; 78(9); 2305-17. ©2018 AACR.

10.
Gastroenterology ; 153(1): 277-291.e19, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315323

RESUMO

BACKGROUND & AIMS: Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. METHODS: We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from KrasG12D/+/Trp53R172H/+/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. RESULTS: In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. CONCLUSIONS: Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inativação Gênica , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Ácido Láctico/biossíntese , Masculino , Camundongos , Pessoa de Meia-Idade , Monoaminoxidase/análise , Transplante de Neoplasias , Pâncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 5-HT2B de Serotonina/genética , Serotonina/análise , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Transdução de Sinais , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Análise Serial de Tecidos , Transcriptoma , Triptofano Hidroxilase/análise , Ureia/análogos & derivados , Ureia/uso terapêutico , Quinases da Família src/metabolismo
11.
Cancer Lett ; 395: 45-52, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28279716

RESUMO

Thus far, clinicopathologic and prognostic significance of mTOR signaling pathway in pancreatic ductal adenocarcinoma (PDAC) remains unclear, although it is involved in PDAC. In this study, total (t-) and phosphorylated (p-) mTOR, 4EBP1 and P70S6K, were investigated. It was found that most aforementioned proteins were related to malignant and progressive phenotypes, especially histological grade, in independent development and validation cohorts of PDAC. In the development cohort, high expression and/or phosphorylation of mTOR, 4EBP1 and P70S6K were all univariately associated with poor tumor-specific survival, whereas p-mTOR, p-4EBP1 and p-P70S6K, adjusted for clinicopathologic variables, unlike t-mTOR, t-4EBP1 and t-P70S6K, were shown to be independent prognostic factors in multivariate analysis. Interestingly and importantly, the independently significant impacts of p-mTOR and p-4EBP1 on tumor-specific survival were confirmed in the validation cohort. Contrarily, t-mTOR and t-4EBP1 were only univariately significant, while t-P70S6K and p-P70S6K were not prognostic. Finally, mTOR and EIF4EBP1, genes encoding mTOR and 4EBP1, also serve as prognostic indicators in the publicly available TCGA RNA-sequencing database. Our data indicate that expression and activation, especially the latter, of mTOR and 4EBP1, might have clinicopathologic and prognostic significance in PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Fosfoproteínas/fisiologia , Prognóstico , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia
12.
Sci Rep ; 7: 41404, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112250

RESUMO

3ß-Hydroxysteroid-Δ24 reductase (DHCR24), the final enzyme of the cholesterol biosynthetic pathway, has been associated with urogenital neoplasms. However, the function of DHCR24 in endometrial cancer (EC) remains largely elusive. Here, we analyzed the expression profile of DHCR24 and the progesterone receptor (PGR) in our tissue microarray of EC (n = 258), the existing EC database in GEO (Gene Expression Omnibus), and TCGA (The Cancer Genome Atlas). We found that DHCR24 was significantly elevated in patients with EC, and that the up-regulation of DHCR24 was associated with advanced clinical stage, histological grading, vascular invasion, lymphatic metastasis, and reduced overall survival. In addition, DHCR24 expression could be induced by insulin though STAT3, which directly binds to the promoter elements of DHCR24, as demonstrated by ChIP-PCR and luciferase assays. Furthermore, genetically silencing DHCR24 inhibited the metastatic ability of endometrial cancer cells and up-regulated PGR expression, which made cells more sensitive to progestin. Taken together, we have demonstrated for the first time the crucial role of the insulin/STAT3/DHCR24/PGR axis in the progression of EC by modulating the metastasis and progesterone response, which could serve as potential therapeutic targets for the treatment of EC with progesterone receptor loss.


Assuntos
Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/patologia , Endométrio/anormalidades , Insulina/efeitos adversos , Proteínas do Tecido Nervoso/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Regulação para Cima/genética , Doenças Uterinas/enzimologia , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Endométrio/enzimologia , Endométrio/patologia , Indução Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Acetato de Medroxiprogesterona/farmacologia , Acetato de Medroxiprogesterona/uso terapêutico , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Prognóstico , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos , Doenças Uterinas/genética , Doenças Uterinas/patologia
13.
Sci Rep ; 7: 40689, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098172

RESUMO

Polycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds-ikarugamycin (1), capsimycin (2) and capsimycin B (3)-two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method. The post-modification mechanism of the carbocyclic ring at C-14/C-13 of compound 1 in the biosynthesis of an important intermediate 3 was investigated. A putative cytochrome P450 superfamily gene, SXIM_40690 (ikaD), which was proximally localized to the ikarugamycin biosynthetic pathway, was characterized. In vivo gene inactivation and complementation experiment confirmed that IkaD catalysed the epoxide-ring formation reaction and further hydroxylation of ethyl side chain to form capsimycin G (3'). Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD were measured with Surface Plasmon Resonance. The intermediate compound 3' was isolated and identified as 30-hydroxyl-capsimycin B. The caspimycins 2 and 3, were transferred to methoxyl derivatives, 6 and 7, under acidic and heating conditions. Compounds 1-3 exhibited anti-proliferative activities against pancreatic carcinoma with IC50 values of 1.30-3.37 µM.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Streptomyces/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Hidroxilação , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Compostos Orgânicos/farmacologia , Oxirredução , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptomyces/classificação , Streptomyces/genética , Relação Estrutura-Atividade
14.
Sci Rep ; 6: 31071, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506146

RESUMO

Gastrointestinal stromal tumor (GIST) is the most major mesenchymal neoplasm of the digestive tract. Up to now, imatinib mesylate has been used as a standard first-line treatment for irresectable and metastasized GIST patients or adjuvant treatment for advanced GIST patients who received surgical resection. However, secondary resistance to imatinib usually happens, resulting in a major obstacle in GIST successful therapy. In this study, we first found that collagen and calcium binding EGF domains 1 (CCBE1) expression gradually elevated along with the risk degree of NIH classification, and poor prognosis emerged in the CCBE1-positive patients. In vitro experiments showed that recombinant CCBE1 protein can enhance angiogenesis and neutralize partial effect of imatinib on the GIST-T1 cells. In conclusion, these data indicated that CCBE1 may be served as a new predictor of prognosis in post-operative GIST patients and may play an important role in stimulating GIST progression.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Mesilato de Imatinib/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação ao Cálcio/genética , Carcinogênese , Linhagem Celular Tumoral , Resistência a Medicamentos , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/mortalidade , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Prognóstico , Análise de Sobrevida , Proteínas Supressoras de Tumor/genética , Regulação para Cima
15.
Oncotarget ; 7(4): 4226-40, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26735172

RESUMO

Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3), an extracellular matrix (ECM) protein associated with vascular morphogenesis and remodeling, is commonly upregulated in multiple types of human cancers and correlates with tumor progression. However, its expression pattern and underlying cellular functions in pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. In current study, we observed that expression of EDIL3 was significantly up-regulated in PDAC compared with normal controls in both cell lines and clinical specimens. In addition, elevated EDIL3 expression was positively correlated with patients' TNM stage and T classification. Kaplan-Meier analysis indicated that high EDIL3 expression was significantly associated with shorter overall survival times in PDAC patients. Multivariate Cox regression analysis confirmed EDIL3 expression, age, lymph node metastasis and histological differentiation as independent prognostic factors in PDAC. Knockdown of EDIL3 showed no significant influence on cell viability, migration, invasion and starvation-induced apoptosis, but compromised anoikis resistance and anchorage independent tumor growth of PDAC cells. Meanwhile, treatment with recombinant EDIL3 protein markedly promoted anoikis resistance and anchorage independent tumor growth. Mechanistically, we demonstrated that altered protein expression of Bcl-2 family might contribute to the oncogenic activities of EDIL3. In conclusion, this study provides evidences that EDIL3 is a potential predictor and plays an important role in anchorage independent tumor growth of PDAC and EDIL3-related pathways might represent a novel therapeutic strategy for treatment of pancreatic cancer.


Assuntos
Adenocarcinoma/secundário , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/secundário , Proteínas de Transporte/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Transporte/genética , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Rep ; 5: 10575, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26015068

RESUMO

Liver kinase B1 (LKB1) has been identified as a critical modulator involved in cell proliferation and polarity. The purpose of the current study was to characterize the expression pattern of LKB1 and assess the clinical significance of LKB1 expression in pancreatic ductal adenocarcinoma (PDAC) patients. LKB1 mRNA expression which was analyzed in 32 PDAC lesions and matched non-tumor tissues, was downregulated in 50% (16/32) of PDAC lesions. Similar results were also obtained by analyzing three independent datasets from Oncomine. Protein expression of LKB1 was significantly reduced in 6 PDAC cell lines and downregulated in 31.3% (10/32) of PDAC lesions compared to matched non-tumorous tissues, as determined by Western blot analysis. Additionally, tissue microarray containing 205 PDAC specimens was evaluated for LKB1 expression by IHC and demonstrated that reduced expression of LKB1 in 17.6% (36/205) of PDAC tissues was significantly correlated with clinical stage, T classification, N classification, liver metastasis and vascular invasion. Importantly, Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of PDAC and found that LKB1 protein expression was one of the independent prognostic factors for overall survival of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Proteínas Serina-Treonina Quinases/metabolismo , Idoso , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Demografia , Regulação para Baixo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
J Cancer Res Clin Oncol ; 141(2): 269-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25216702

RESUMO

BACKGROUND: Lysyl oxidase-like 4 (LOXL4) has been found up-regulated in a variety of human malignancies, but its clinical significance and functional roles in gastric cancer (GC) remain unknown. METHODS: Lysyl oxidase-like 4 (LOXL4) expression level in tumor tissues and human GC cell lines was evaluated by quantitative real-time polymerase chain reaction, Western blotting and immunohistochemical analyses. Its clinical significance was inferred from the analysis of 379 tissue samples of patients with GC using tissue microarray. The roles of LOXL4 in cell proliferation, migration and invasion in vitro were analyzed by gene over-expression, RNA interference and recombinant protein. Effects of LOXL4 on regulation of focal adhesion kinase/Src kinase (FAK/Src) pathway were examined by Western blotting. RESULTS: Lysyl oxidase-like 4 (LOXL4) was up-regulated in GC tissues relative to paired non-tumor tissues, and this over-expression was significantly associated with tumor size, depth of tumor invasion, lymph node metastasis, tumor-node-metastasis (TNM) stages and poorer overall survival. Over-expression of LOXL4 has promotive effects on GC cell proliferation, migration and invasion in vitro, consistent with this, LOXL4 knockdown has inhibitive effects on GC cell proliferation, migration and invasion. Furthermore, recombinant human LOXL4 protein also promoted GC cell proliferation and migration. Subsequent mechanistic studies showed that LOXL4 could activate FAK/Src pathway to enhance cell-extracellular matrix adhesion. CONCLUSIONS: Taken together, our data reveal that up-regulation of LOXL4 expression is a frequent event in GC progression, contributes to tumor cell proliferation and metastasis, and LOXL4 may be a potential independent prognostic marker and therapeutic target for GC.


Assuntos
Adenocarcinoma/secundário , Aminoácido Oxirredutases/metabolismo , Movimento Celular , Proliferação de Células , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Gástricas/patologia , Quinases da Família src/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Aminoácido Oxirredutases/genética , Apoptose , Western Blotting , Adesão Celular , Feminino , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Células Tumorais Cultivadas , Quinases da Família src/genética
19.
Int J Clin Exp Pathol ; 7(10): 6447-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400723

RESUMO

CCN6/Wnt1-inducible signaling protein-3 (CCN6/WISP3) is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matricellular proteins, which are often dysregulated in cancers. However, the functional role and clinical significance of WISP3 in gastric cancer remain unclear. In this study, we found that silencing of WISP3 suppressed gastric cancer cell proliferation, migration and invasion. Cell adhesion to collagens (collagen I and IV), but not to fibronectin, were significantly inhibited by silencing of WISP3. Furthermore, silencing of WISP3 prevented ß-catenin transferring from cell cytoplasm to nuclear, and suppressed canonical Wnt/ß-catenin signaling and its downstream target genes, cyclin D1 and TCF-4. By immunohistochemical analysis of 379 patients, we found that the expression of WISP3 is closely associated with gastric cancer size and tumor invasion, and indicates a poor prognosis in both test cohort (253 patients) and validation cohort (126 patients). Moreover, the expression of WISP3 was positively correlated with the expression of cyclin D1 and TCF-4 in gastric cancer tissues. Taken together, our data suggests that WISP3 might be a promising prognostic factor and WISP3-Wnt/ß-catenin axis may be a new therapeutic target for the intervention of gastric cancer growth and metastasis.


Assuntos
Adenocarcinoma/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular , Adenocarcinoma/genética , Adenocarcinoma/secundário , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Adesão Celular , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Regulação para Baixo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Interferência de RNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Tempo , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , Transfecção , Carga Tumoral
20.
Int J Clin Exp Pathol ; 7(7): 3827-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120759

RESUMO

Paraneoplastic Ma1 (PNMA1) is a member of an expanding family of 'brain/testis' proteins involved in an autoimmune disorder defined as paraneoplastic neurological syndrome (PNS). Although it is widely studied in PNS, little is known about the underlying clinical significance and biological function of PNMA1 in tumors. Here, we find that elevated PNMA1 expression is more commonly observed in pancreatic ductal adenocarcinoma (PDAC) cell lines, compared with normal pancreatic cell and tissues from pancreatic ductal adenocarcinoma patient. Besides, higher PNMA1 expression is closely correlated with large tumor size. Suppression of endogenous PNMA1 expression decreases cell viability and promotes cell apoptosis. Subsequent studies reveal that the PI3K/AKT, MAPK/ERK pathway and members of the anti-apoptotic Bcl-2 family may be involved in the pro-survival and anti-apoptotic effect of PNMA1 on PDAC. Taken together, this study provides evidence that PNMA1 is involved in tumor growth of pancreatic carcinoma and PNMA1-related pathways might represent a new treatment strategy.


Assuntos
Antígenos/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/fisiologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia , Idoso , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA