Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Bioact Mater ; 15: 409-425, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386350

RESUMO

We has synthesized the biocompatible gelatin reduced graphene oxide (GOG) in previous research, and in this study we would further evaluate its effects on bone remodeling in the aspects of osteoclastogenesis and angiogenesis so as to verify its impact on accelerating orthodontic tooth movement. The mouse orthodontic tooth movement (OTM) model tests in vivo showed that the tooth movement was accelerated in the GOG local injection group with more osteoclastic bone resorption and neovascularization compared with the PBS injection group. The analysis on the degradation of GOG in bone marrow stromal stem cells (BMSCs) illustrated its good biocompatibility in vitro and the accumulation of GOG in spleen after local injection of GOG around the teeth in OTM model in vivo also didn't influence the survival and life of animals. The co-culture of BMSCs with hematopoietic stem cells (HSCs) or human umbilical vein endothelial cells (HUVECs) in transwell chamber systems were constructed to test the effects of GOG stimulated BMSCs on osteoclastogenesis and angiogenesis in vitro. With the GOG stimulated BMSCs co-culture in upper chamber of transwell, the HSCs in lower chamber manifested the enhanced osteoclastogenesis. Meanwhile, the co-culture of GOG stimulated BMSCs with HUVECs showed a promotive effect on the angiogenic ability of HUVECs. The mechanism analysis on the biofunctions of the GOG stimulated BMSCs illustrated the important regulatory effects of PERK pathway on osteoclastogenesis and angiogenesis. All the results showed the biosecurity of GOG and the biological functions of GOG stimulated BMSCs in accelerating bone remodeling and tooth movement.

2.
Bioact Mater ; 18: 116-127, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387176

RESUMO

The clinical application of bone morphogenetic protein-2 (BMP-2) is limited by several factors, including ineffectiveness at low doses and severe adverse effects at high doses. To address these efficacy and safety limitations, we explored whether orchestration of energy metabolism and osteogenesis by magnesium ion (Mg2+) could reduce the dose and thereby improve the safety of BMP-2. Our results demonstrated that rapid metabolic activation triggered by BMP-2 was indispensable for subsequent osteogenesis. Moreover, inadequate metabolic stimulation was shown to be responsible for the ineffectiveness of low-dose BMP-2. Next, we identified that Mg2+, as an ''energy propellant", substantially increased cellular bioenergetic levels to support the osteogenesis via the Akt-glycolysis-Mrs2-mitochondrial axis, and consequently enhanced the osteoinductivity of BMP-2. Based on the mechanistic discovery, microgel composite hydrogels were fabricated as low-dose BMP-2/Mg2+ codelivery system through microfluidic and 3D printing technologies. An in vivo study further confirmed that rapid and robust bone regeneration was induced by the codelivery system. Collectively, these results suggest that this bioenergetic-driven, cost-effective, low-dose BMP-2-based strategy has substantial potential for bone repair.

3.
Front Chem ; 10: 839062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273950

RESUMO

Deteriorated bone quality in osteoporosis challenges the success of implants, which are in urgent need for better early osseointegration as well as antibacterial property for long-term stability. As osteoporotic bone formation tangles with angiogenic clues, the relationship between osteogenesis and angiogenesis has been a novel therapy target for osteoporosis. However, few designs of implant coatings take the compromised osteoporotic angiogenic microenvironment into consideration. Here, we investigated the angiogenic effects of bioactive strontium ions of different doses in HUVECs only and in a co-culture system with BMSCs. A proper dose of strontium ions (0.2-1 mM) could enhance the secretion of VEGFA and Ang-1 in HUVECs as well as in the co-culture system with BMSCs, exhibiting potential to create an angiogenic microenvironment in the early stage that would be beneficial to osteogenesis. Based on the dose screening, we fabricated a bioactive titanium surface doped with zinc and different doses of strontium by plasma electrolytic oxidation (PEO), for the establishment of a microenvironment favoring osseointegration for osteoporosis. The dual bioactive elements augmented titanium surfaces induced robust osteogenic differentiation, and enhanced antimicrobial properties. Augmented titanium implant surfaces exhibited improved bone formation and bone-implant contact under comprehensive assessment of an in vivo bone-implant interface. In conclusion, zinc- and strontium-augmented titanium surface benefits the osseointegration in osteoporosis via promoting osteogenic differentiation, exerting antibacterial efficacy, and stimulating early angiogenesis.

4.
Int J Oral Sci ; 14(1): 10, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35153297

RESUMO

Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then, micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor's expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.


Assuntos
Durapatita , Osteogênese , Alginatos/farmacologia , Animais , Regeneração Óssea , Diferenciação Celular , Durapatita/farmacologia , Ginsenosídeos , Ratos , Seda/farmacologia , Tecidos Suporte
5.
Chin Med ; 17(1): 26, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189918

RESUMO

BACKGROUND: Microarc oxidation (MAO) on the surface of medical pure titanium can improve its histocompatibility, and loading drugs on the surface can resist excessive intimal hyperplasia. METHODS: In this study, salidroside (SAL) was loaded on the surface of porous titanium (Ti) with polydopamine (PDA) carrier. The effects of SAL on the osteogenesis and angiogenesis of Ti implants were studied by phalloidin staining, alizarin red staining, ALP staining, wound-healing assay, cell transwell assay, matrigel tube formation, and osteogenic and angiogenic genes and proteins expression detected by PCR and western blot in vitro. The bone defect model experiments in rats was established in vivo including X-ray, micro CT, hematoxylin and eosin staining (HE), immunohistochemistry (IHC), Goldner's trichrome analysis, Safranin O-fast green staining and determination of contents of TNF-α and IL-6 in serum. RESULTS: EDS and EDS mapping showed that SAL could be loaded on the surface of the MAO coating by PDA. A drug release experiment showed that SAL loaded on the Ti coating could release slowly and stably without sudden release risk. In vitro cell experiments showed that the SAL coating could promote the proliferation, morphology, calcification and alkaline phosphate activity of MC3T3-E1 cells. At the same time, it promoted the migration and tube formation of HUVEC cells. The SAL coating promoted osteogenesis and angiogenesis by promoting the expression of genes and proteins related to. In vivo experiments, HE and IHC showed that SAL significantly promoted the expression of COL-1 and CD31. Goldner's trichrome and Safranin O-fast green staining showed that SAL coating could increase the new bone tissue around the implantation site. The SAL coating had anti-inflammatory activity by reducing the levels of TNF-α and IL-6 in vivo. CONCLUSION: Therefore, SAL could improve osteogenesis and angiogenesis in conjunction with the Ti-PDA coating.

6.
Adv Mater ; 33(48): e2105667, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605063

RESUMO

The wet and highly dynamic environment of the mouth makes local treatment of oral mucosal diseases challenging. To overcome this, a photo-crosslinking hydrogel adhesive is developed inspired by the success of light-curing techniques in dentistry. The adhesive operates on a fast (within 5 s) phototriggered S-nitrosylation coupling reaction and employs imine anchoring to connect to host tissues. Unlike other often-used clinical agents that adhere weakly and for short durations, this thin, elastic, adhesive, and degradable cyclic o-nitrobenzyl-modified hyaluronic acid gel protects mucosal wounds from disturbance by liquid rinsing, oral movement, and friction for more than 24 h. The results from both rat and pig oral mucosa repair models demonstrate that this new gel adhesive creates a favorable microenvironment for tissue repair and can shorten tissue healing time. This study thus illustrates a therapeutic strategy with the potential to advance the treatment of oral mucosal defects in the clinic.


Assuntos
Hidrogéis/química , Mucosa Bucal/patologia , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Luz , Camundongos , Nitrofenóis/química , Oxigênio/química , Ratos , Reologia , Suínos , Adesivos Teciduais/química , Raios Ultravioleta
7.
Front Cell Dev Biol ; 9: 737670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692695

RESUMO

Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.

8.
Front Genet ; 12: 676464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194476

RESUMO

OBJECTIVE: Recurrence remains the main cause of the poor prognosis in stage I-IIIA lung squamous cell carcinoma (LUSC) after surgical resection. In the present study, we aimed to identify the long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) related to the recurrence of stage I-IIIA LUSC. Moreover, we constructed a risk assessment model to predict the recurrence of LUSC patients. METHODS: RNA sequencing data (including miRNAs, lncRNAs, and mRNAs) and relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. The differentially expressed lncRNAs, miRNAs, and mRNAs were identified using the "DESeq2" package of the R language. Univariate Cox proportional hazards regression analysis and Kaplan-Meier curve were used to identify recurrence-related genes. Stepwise multivariate Cox regression analysis was carried out to establish a risk model for predicting recurrence in the training cohort. Moreover, Kaplan-Meier curves and receiver operating characteristic (ROC) curves were adopted to examine the predictive performance of the signature in the training cohort, validation cohort, and entire cohort. RESULTS: Based on the TCGA database, we analyzed the differentially expressed genes (DEGs) among 27 patients with recurrent stage I-IIIA LUSC and 134 patients with non-recurrent stage I-IIIA LUSC, and identified 431 lncRNAs, 36 miRNAs, and 746 mRNAs with different expression levels. Out of these DEGs, the optimal combination of DEGs was finally determined, and a nine-joint RNA molecular signature was constructed for clinical prediction of recurrence, including LINC02683, AC244517.5, LINC02418, LINC01322, AC011468.3, hsa-mir-6825, AC020637.1, AC027117.2, and SERPINB12. The ROC curve proved that the model had good predictive performance in predicting recurrence. The area under the curve (AUC) of the prognostic model for recurrence-free survival (RFS) was 0.989 at 3 years and 0.958 at 5 years (in the training set). The combined RNA signature also revealed good predictive performance in predicting the recurrence in the validation cohort and entire cohort. CONCLUSIONS: In the present study, we constructed a nine-joint RNA molecular signature for recurrence prediction of stage I-IIIA LUSC. Collectively, our findings provided new and valuable clinical evidence for predicting the recurrence and targeted treatment of stage I-IIIA LUSC.

9.
Int J Mol Sci ; 22(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281250

RESUMO

Amelogenin comprises ~90% of enamel proteins; however, the involvement of Amelx transcriptional activation in regulating ameloblast differentiation from induced pluripotent stem cells (iPSCs) remains unknown. In this study, we generated doxycycline-inducible Amelx-expressing mouse iPSCs (Amelx-iPSCs). We then established a three-stage ameloblast induction strategy from Amelx-iPSCs, including induction of surface ectoderm (stage 1), dental epithelial cells (DECs; stage 2), and ameloblast lineage (stage 3) in sequence, by manipulating several signaling molecules. We found that adjunctive use of lithium chloride (LiCl) in addition to bone morphogenetic protein 4 and retinoic acid promoted concentration-dependent differentiation of DECs. The resulting cells had a cobblestone appearance and keratin14 positivity. Attenuation of LiCl at stage 3 together with transforming growth factor ß1 and epidermal growth factor resulted in an ameloblast lineage with elongated cell morphology, positivity for ameloblast markers, and calcium deposition. Although stage-specific activation of Amelx did not produce noticeable phenotypic changes in ameloblast differentiation, Amelx activation at stage 3 significantly enhanced cell adhesion as well as decreased proliferation and migration. These results suggest that the combination of inducible Amelx transcription and stage-specific ameloblast induction for iPSCs represents a powerful tool to highlight underlying mechanisms in ameloblast differentiation and function in association with Amelx expression.


Assuntos
Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogenina/metabolismo , Ameloblastos/fisiologia , Amelogenina/genética , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Doxiciclina/farmacologia , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transdução de Sinais , Ativação Transcricional/fisiologia
10.
Biofabrication ; 13(3)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33967033

RESUMO

Stem cells play critical roles in tissue repair and regeneration. The construction of stem cell-derived microtissue is a promising strategy for transplanting cells into defects to improve tissue regeneration efficiency. However, rapidly constructing larger microtissues and promoting vascularization to ensure the cellular nutrient supply remain major challenges. Here, we have developed a magnetic device to rapidly construct and regulate millimeter-scale microtissues derived from magnetic nanoparticle-labeled cells. When the microtissue was cultured under a specific magnetic field, the shape of the microtissue could be changed. Importantly, cell proliferation was maintained, and angiogenesis was activated in the process of microtissue deformation. We developed a magnetic control method to treat microtissue, and the implanted microtissue showed excellent vascularizationin vivo. In brief, this magnetic control technology provides a promising strategy for vascularized regenerative medicine.


Assuntos
Fenômenos Magnéticos , Engenharia Tecidual , Proliferação de Células , Células-Tronco
11.
Bioact Mater ; 6(11): 3976-3986, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33997487

RESUMO

Osteochondral repair remains a major challenge in current clinical practice despite significant advances in tissue engineering. In particular, the lateral integration of neocartilage into surrounding native cartilage is a difficult and inadequately addressed problem that determines the success of tissue repair. Here, a novel design of an integral bilayer scaffold combined with a photocurable silk sealant for osteochondral repair is reported. First, we fabricated a bilayer silk scaffold with a cartilage layer resembling native cartilage in surface morphology and mechanical strength and a BMP-2-loaded porous subchondral bone layer that facilitated the osteogenic differentiation of BMSCs. Second, a TGF-ß3-loaded methacrylated silk fibroin sealant (Sil-MA) exhibiting biocompatibility and good adhesive properties was developed and confirmed to promote chondrocyte migration and differentiation. Importantly, this TGF-ß3-loaded Sil-MA hydrogel provided a bridge between the cartilage layer of the scaffold and the surrounding cartilage and then guided new cartilage to grow towards and replace the degraded cartilage layer from the surrounding native cartilage in the early stage of knee repair. Thus, osteochondral regeneration and superior lateral integration were achieved in vivo by using this composite. These results demonstrate that the new approach of marginal sealing around the cartilage layer of bilayer scaffolds with Sil-MA hydrogel has tremendous potential for clinical use in osteochondral regeneration.

12.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(2): 123-128, 2021 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-33834665

RESUMO

Oromaxillofacial hard tissue defects is still a difficult problem in clinical treatment. Regeneration of oromaxillofacial hard tissue based on tissue engineering technology has a good clinical application prospect. The functional modification of scaffolds is one of key factors that influence the outcome of tissue regeneration. The biomimetic design of biomaterials through simulating the natural structure and composition of oromaxillofacial hard tissue has gradually become a research hotspot due to its advantages of simplicity and efficiency. In this article, the biomimetic modification of biomaterials for oromaxillofacial hard tissue regeneration is reviewed, expecting to provide a new idea for the treatment of oromaxillofacial hard tissue defect.


Assuntos
Implantes Dentários , Tecidos Suporte , Materiais Biocompatíveis , Biomimética , Regeneração Óssea , Engenharia Tecidual
13.
ACS Omega ; 6(14): 9449-9459, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869925

RESUMO

Injectable hydrogels provide an effective strategy for minimally invasive treatment on irregular bony defects in the maxillofacial region. To improve the osteoinduction of gelatin methacrylate (GelMA), we fabricated a three-dimensional (3D) culture system based on the incorporation of magnesium ammonium phosphate hexahydrate (struvite) into GelMA. The optimal concentration of struvite was investigated using the struvite extracts, and 500 µg mL-1 was found to be the most suitable concentration for the osteogenesis of dental pulp stem cells (DPSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). We prepared the GelMA composite (MgP) with 500 µg mL-1 struvite. Struvite did not affect the cross-linking of GelMA and released Mg2+ during degradation. The cell delivery system using MgP improved the laden-cell viability, upregulated the expression of osteogenic and angiogenic-differentiation-related genes, and promoted cell migration. Overall, the modifications made to the GelMA in this study improved osteoinduction and demonstrated great potential for application in vascularized bone tissue regeneration.

14.
Bioact Mater ; 6(11): 3756-3765, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33898876

RESUMO

With the development of magnetic manipulation technology based on magnetic nanoparticles (MNPs), scaffold-free microtissues can be constructed utilizing the magnetic attraction of MNP-labeled cells. The rapid in vitro construction and in vivo vascularization of microtissues with complex hierarchical architectures are of great importance to the viability and function of stem cell microtissues. Endothelial cells are indispensable for the formation of blood vessels and can be used in the prevascularization of engineered tissue constructs. Herein, safe and rapid magnetic labeling of cells was achieved by incubation with MNPs for 1 h, and ultrathick scaffold-free microtissues with different sophisticated architectures were rapidly assembled, layer by layer, in 5 min intervals. The in vivo transplantation results showed that in a stem cell microtissue with trisection architecture, the two separated human umbilical vein endothelial cell (HUVEC) layers would spontaneously extend to the stem cell layers and connect with each other to form a spatial network of functional blood vessels, which anastomosed with the host vasculature. The "hamburger" architecture of stem cell microtissues with separated HUVEC layers could promote vascularization and stem cell survival. This study will contribute to the construction and application of structural and functional tissues or organs in the future.

15.
Cell Rep ; 35(1): 108964, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826897

RESUMO

Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Raiz Dentária/citologia , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Proteínas de Ligação a DNA/deficiência , Regulação para Baixo , Genes Supressores de Tumor , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dente Molar/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Ligação Proteica , Células-Tronco/citologia , Raiz Dentária/crescimento & desenvolvimento , Fatores de Transcrição/deficiência , Transcrição Genética , Regulação para Cima , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Front Mol Biosci ; 8: 632837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665208

RESUMO

Background: A variety of regulatory approaches including immune modulation have been explored as approaches to either eradicate antitumor response or induce suppressive mechanism in the glioblastoma microenvironment. Thus, the study of immune-related long noncoding RNA (lncRNA) signature is of great value in the diagnosis, treatment, and prognosis of glioblastoma. Methods: Glioblastoma samples with lncRNA sequencing and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) database. Immune-lncRNAs co-expression networks were built to identify immune-related lncRNAs via Pearson correlation. Based on the median risk score acquired in the training set, we divided the samples into high- and low-risk groups and demonstrate the survival prediction ability of the immune-related lncRNA signature. Both principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used for immune state analysis. Results: A cohort of 151 glioblastoma samples and 730 immune-related genes were acquired in this study. A five immune-related lncRNA signature (AC046143.1, AC021054.1, AC080112.1, MIR222HG, and PRKCQ-AS1) was identified. Compared with patients in the high-risk group, patients in the low-risk group showed a longer overall survival (OS) in the training, validation, and entire TCGA set (p = 1.931e-05, p = 1.706e-02, and p = 3.397e-06, respectively). Additionally, the survival prediction ability of this lncRNA signature was independent of known clinical factors and molecular features. The area under the ROC curve (AUC) and stratified analyses were further performed to verify its optimal survival predictive potency. Of note, the high-and low-risk groups exhibited significantly distinct immune state according to the PCA and GSEA analyses. Conclusions: Our study proposes that a five immune-related lncRNA signature can be utilized as a latent indicator of prognosis and potential therapeutic approach for glioblastoma.

17.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766930

RESUMO

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.


Assuntos
Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Incisivo/embriologia , Células-Tronco Mesenquimais/metabolismo , Mitose , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Aurora Quinase A/genética , Proteína Quinase CDC2/genética , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética
18.
Adv Mater ; 33(12): e2004172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33565154

RESUMO

Human immune system acts as a pivotal role in the tissue homeostasis and disease progression. Immunomodulatory biomaterials that can manipulate innate immunity and adaptive immunity hold great promise for a broad range of prophylactic and therapeutic purposes. This review is focused on the design strategies and principles of immunomodulatory biomaterials from the standpoint of materials science to regulate macrophage fate, such as activation, polarization, adhesion, migration, proliferation, and secretion. It offers a comprehensive survey and discussion on the tunability of material designs regarding physical, chemical, biological, and dynamic cues for modulating macrophage immune response. The range of such tailorable cues encompasses surface properties, surface topography, materials mechanics, materials composition, and materials dynamics. The representative immunoengineering applications selected herein demonstrate how macrophage-immunomodulating biomaterials are being exploited for cancer immunotherapy, infection immunotherapy, tissue regeneration, inflammation resolution, and vaccination. A perspective on the future research directions of immunoregulatory biomaterials is also provided.


Assuntos
Materiais Biocompatíveis/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Humanos , Fatores Imunológicos/química , Macrófagos/citologia , Macrófagos/imunologia
19.
Bioact Mater ; 6(7): 2011-2028, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33426373

RESUMO

Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.

20.
ACS Appl Mater Interfaces ; 13(4): 5782-5794, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464812

RESUMO

Peri-implantitis is a typical pathological condition characterized by the destructive inflammation in the soft tissue and the progressive loss of supporting bones. As the current effective treatments and preventive measures are inconsistent and unpredictable, the use of biomaterials as carriers of bioactive ion coatings is a promising approach. However, the translation from lab to large-scale production and clinical applications is difficult due to a technology barrier. Determining the effective dosage of each ion to achieve an in vivo application of the in vitro screening is challenging. Here, we selected zinc and strontium ions to provide multiple effects on antibacterial activity and osteogenesis. The optimal coating with effective release concentrations of the two ions was obtained after the two-step screening from in vitro testing. The results showed that this type of in vivo bioactive ion usage leads to an enhanced osseointegration during the immediate implantation in a periodontitis-affected environment and prevents soft tissue inflammation and bone resorption in an inflammatory environment. The new biologically active ion screening method could verify the effectiveness of this clinical translation and its potential for large-scale production and could determine the effective dosage of each ion for a specific application.


Assuntos
Antibacterianos/uso terapêutico , Implantes Dentários , Peri-Implantite/prevenção & controle , Estrôncio/uso terapêutico , Zinco/uso terapêutico , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/uso terapêutico , Implantes Dentários/microbiologia , Cães , Humanos , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Peri-Implantite/microbiologia , Ratos Sprague-Dawley , Estomatite/microbiologia , Estomatite/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...