Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31230526

RESUMO

Gold nanoparticles (Au NPs) hold great promise in food, industrial and biomedical applications due to their unique physicochemical properties. However, influences of the gastrointestinal tract (GIT), a likely route for Au NPs administration, on the physicochemical properties of Au NPs has been rarely evaluated. Here, we investigated the influence of GIT fluids on the physicochemical properties of Au NPs (5, 50, and 100 nm) and their implications on intestinal epithelial permeability in vitro. Au NPs aggregated in fasted gastric fluids and generated hydroxyl radicals in the presence of H2O2. Cell studies showed that GIT fluids incubation of Au NPs affected the cellular uptake of Au NPs but did not induce cytotoxicity or disturb the intestinal epithelial permeability.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31099294

RESUMO

Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.

3.
Infect Genet Evol ; 73: 113-118, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31029793

RESUMO

Enterocytozoon bieneusi is an emerging zoonotic intestinal pathogen that infects humans and various animal species. Here, we aimed to determine the infection rate and genetic characteristics of E. bieneusi from bamboo rats from different regions of China using nested polymerase chain reaction-based amplification of the internal transcribed spacer region of the rRNA gene. A total of 435 bamboo rats fecal samples were collected from individual tank from Guangdong, Hunan, Jiangxi, Chongqing, and Guangxi, southeastern China. E. bieneusi was detected on 22 tanks (5.1%, 22/435), with a higher infection rate being observed among samples from Guangdong Province (10.9%, 5/46) compared with those from Hunan (9.3%, 10/107), Jiangxi (6.7%, 6/90), Chongqing (2.0%, 1/50), and Guangxi (0%, 0/142) (P < .01). Six genotypes were identified, including four known genotypes (D, EbpA, J, and PigEBITS7) and two novel genotypes (named BR1 and BR2). Of these, zoonotic genotype D was the most prevalent in the present study (n = 17). Phylogenetic analysis revealed that genotypes D, EbpA, and PigEBITS7 were clustered into Group 1, while genotypes J, BR1, and BR2 were clustered into Group 2. To our knowledge, this is the first report of E. bieneusi in bamboo rats. The identification of zoonotic genotype D as the predominant genotype in bamboo rats suggests that these animals represent a potential zoonotic risk for the transfer of the pathogen in China.

4.
J Nanobiotechnology ; 17(1): 54, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992018

RESUMO

BACKGROUND: Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects is therefore highly desirable. Here, we show a new type of terbium oxide nanoparticles (Tb4O7 NPs) with intrinsic oxidase-like activity for in vitro and in vivo antibacterial application. RESULTS: We find that Tb4O7 NPs can quickly oxidize a series of organic substrates in the absence of hydrogen peroxide. The oxidase-like capacity of Tb4O7 NPs allows these NPs to consume antioxidant biomolecules and generate reactive oxygen species to disable bacteria in vitro. Moreover, the in vivo experiments showed that Tb4O7 NPs are efficacious in wound-healing and are protective of normal tissues. CONCLUSIONS: Our results reveal that Tb4O7 NPs have intrinsic oxidase-like activity and show effective antibacterial ability both in vitro and in vivo. These findings demonstrate that Tb4O7 NPs are effective antibacterial agents and may have a potential application in wound healing.


Assuntos
Antibacterianos/química , Escherichia coli , Nanopartículas Metálicas/química , Óxidos/química , Oxirredutases/química , Staphylococcus aureus , Térbio/química , Cicatrização , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Sobrevivência Celular , Escherichia coli/efeitos dos fármacos , Hemólise , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos BALB C , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Térbio/farmacologia
5.
Nat Commun ; 10(1): 219, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644406

RESUMO

The oriented attachment of small nanoparticles (NPs) is recognized as an important mechanism involved in the growth of inorganic nanocrystals. However, non-oriented attachment of dissimilar NPs has been rarely observed in dispersion. This communication reports a welding phenomenon occurred directly between as-synthesized dispersions of single-component Au and chalcogenide NPs, which leads to the formation of asymmetric Au-chalcogenide hybrid NPs (HNPs). The welding of dissimilar NPs in dispersion is mainly driven by the ligand desorption-induced conformal contact between NPs and the diffusion of Au into chalcogenide NPs. The welding process can occur between NPs with distinct shapes or different capping agents or in different solvent media. A two-step assembly-welding mechanism is proposed for this process, based on our in situ electron spin resonance measurements and ab initio molecular dynamics simulation. The understanding of NP welding in dispersion may lead to the development of unconventional synthetic tools for the fabrication of hybrid nanostructures with diverse applications.

6.
J Nanobiotechnology ; 16(1): 86, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384844

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.7 macrophages. RESULTS: Citrate- and polyvinylpyrrolidone (PVP)-stabilized 5-nm AuNPs (Au-5 nm/Citrate and Au-5 nm/PVP) and tannic acid (TA)-stabilized 5-, 10-, 15-, 30- and 60-nm AuNPs were intragastrically administered to C57BL/6 mice daily for 8 days during and after 5-day dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed more marked anti-colitis effects by oral administration of Au-5 nm/Citrate and Au-5 nm/PVP, when compared to TA-stabilized AuNPs. Based on colonic myeloperoxidase activity, colonic and peripheral levels of interleukin-6 and tumor necrosis factor-α, and peripheral counts of leukocyte and lymphocyte, Au-5 nm/Citrate and Au-5 nm/PVP attenuated colonic and systemic inflammation more effectively than TA-stabilized AuNPs. High-throughput sequencing of fecal 16S rRNA indicated that AuNPs could induce gut dysbiosis in mice by decreasing the α-diversity, the Firmicutes/Bacteroidetes ratio, certain short-chain fatty acid-producing bacteria and Lactobacillus. Based on in vitro studies using RAW264.7 cells and electron spin resonance oximetry, AuNPs inhibited lipopolysaccharide (LPS)-triggered inducible nitric oxide (NO) synthase expression and NO production via reduction of Toll-like receptor 4 (TLR4), and attenuated LPS-induced nuclear factor kappa beta activation and proinflammatory cytokine production via both TLR4 reduction and catalytic detoxification of peroxynitrite and hydrogen peroxide. CONCLUSIONS: AuNPs have promising potential as anti-inflammatory agents; however, their therapeutic applications via the oral route may have a negative impact on the gut microbiota.

7.
J Cell Mol Med ; 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467945

RESUMO

Exosomes are small membrane vesicles released by many cells. These vesicles can mediate cellular communications by transmitting active molecules including long non-coding RNAs (lncRNAs). In this study, our aim was to identify a panel of lncRNAs in serum exosomes for the diagnosis and recurrence prediction of bladder cancer (BC). The expressions of 11 candidate lncRNAs in exosome were investigated in training set (n = 200) and an independent validation set (n = 320) via quantitative real-time PCR. A three-lncRNA panel (PCAT-1, UBC1 and SNHG16) was finally identified by multivariate logistic regression model to provide high diagnostic accuracy for BC with an area under the receiver-operating characteristic curve (AUC) of 0.857 and 0.826 in training set and validation set, respectively, which was significantly higher than that of urine cytology. The corresponding AUCs of this panel for patients with Ta, T1 and T2-T4 were 0.760, 0.827 and 0.878, respectively. In addition, Kaplan-Meier analysis showed that non-muscle-invasive BC (NMIBC) patients with high UBC1 expression had significantly lower recurrence-free survival (P = 0.01). Multivariate Cox analysis demonstrated that UBC1 was independently associated with tumour recurrence of NMIBC (P = 0.018). Our study suggested that lncRNAs in serum exosomes may serve as considerable diagnostic and prognostic biomarkers of BC.

8.
Mol Cancer ; 17(1): 142, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30268126

RESUMO

Recently, expression signatures of exosomal long non-coding RNAs (lncRNAs) have been proposed as potential non-invasive biomarkers for cancer detection. In this study, we aimed to develop a urinary exosome (UE)-derived lncRNA panel for diagnosis and recurrence prediction of bladder cancer (BC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to screen and evaluate the expressions of eight candidate lncRNAs in a training set (208 urine samples) and a validation set (160 urine samples). A panel consisting of three differently expressed lncRNAs (MALAT1, PCAT-1 and SPRY4-IT1) was established for BC diagnosis in the training set, showing an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.854. Subsequently, the performance of the panel was further verified with an AUC of 0.813 in the validation set, which was significantly higher than that of urine cytology (0.619). In addition, Kaplan-Meier analysis suggested that the up-regulation of PCAT-1 and MALAT1 was associated with poor recurrence-free survival (RFS) of non-muscle-invasive BC (NMIBC) (p < 0.001 and p = 0.002, respectively), and multivariate Cox proportional hazards regression analysis revealed that exosomal PCAT-1 overexpression was an independent prognostic factor for the RFS of NMIBC (p = 0.018). Collectively, our findings indicated that UE-derived lncRNAs possessed considerable clinical value in the diagnosis and prognosis of BC.

9.
Phys Chem Chem Phys ; 20(23): 16117-16125, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29855003

RESUMO

The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

10.
Nanoscale ; 10(23): 11176-11185, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29873378

RESUMO

Nitric oxide (NO) is an endogenous bioregulator with established roles in diverse fields. The difficulty in the modulation of NO release is still a significant obstacle to achieving successful clinical applications. We report herein our initial work using electron spin resonance (ESR) spectroscopy to detect NO generated from S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) donors catalyzed by platinum nanoparticles (Pt NPs, 3 nm) under physiological conditions. With ESR spectroscopy coupled with spin trapping and spin labeling techniques, we identified that Pt NPs can significantly promote the generation of NO from SNAP and GSNO under physiological conditions. A classic NO colorimetric detection kit was also employed to verify that Pt NPs truly triggered the release of NO from its donors. Pt NPs can act as promising delivery vehicles for on-demand NO delivery based on time and dosage. These results, along with the detection of the resulting disulfide product, were confirmed with mass spectrometry. In addition, cellular experiments provided a convincing demonstration that the triggered release of NO from its donors by Pt NPs is efficient in killing human cancer cells in vitro. The catalytic mechanism was elucidated by X-ray photo-electron spectroscopy (XPS) and ultra-high performance liquid chromatography/high-resolution mass spectrometry (UHPLC-HRMS), which suggested that Pt-S bond formation occurs in the solution of Pt NPs and NO donors. Identification of Pt NPs capable of generating NO from S-nitrosothiols (RSNOs) is an important step in harnessing NO for investigations into its clinical applications and therapies.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29667503

RESUMO

Noble metal nanoparticles (NPs) have been widely used in many consumer products. Their effects on the antioxidant activity of commercial dietary supplements have not been well evaluated. In this study, we examined the effects of gold (Au NPs), silver (Ag NPs), platinum (Pt NPs), and palladium (Pd NPs) on the hydroxyl radical (·OH) scavenging ability of three dietary supplements vitamin C (L-ascorbic acid, AA), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA). By electron spin resonance (ESR) spin-trapping measurement, the results show that these noble metal NPs can inhibit the hydroxyl radical scavenging ability of these dietary supplements.

12.
Mol Oncol ; 12(5): 648-658, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29504701

RESUMO

Lung cancer is the first leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence shows that long noncoding RNA (lncRNA) are capable of modulating tumor initiation, proliferation and metastasis. In the present study, we aimed to evaluate whether circulating lncRNA could be used as biomarkers for diagnosis and prognosis of NSCLC. Expression profiles of 14 lncRNA selected from other studies were validated in 20 pairs of tissues by quantitative real-time PCR, and the dysregulated lncRNA thus identified were further validated in serum samples from two independent cohorts along with three tumor makers (CEA, CYFRA21-1, and SCCA). Receiver-operating characteristic analysis was utilized to estimate the diagnostic efficiency of the candidate lncRNA and tumor markers. Importantly, we observed an association between lncRNA expression and overall survival (OS) rate of NSCLC. The expressions of SOX2 overlapping transcript (SOX2OT) and ANRIL were obviously upregulated in NSCLC tissues and serum samples compared with normal controls (P < 0.01). Based on the data from the training set, we next used a logistic regression model to construct an NSCLC diagnostic panel consisting of two lncRNA and three tumor markers. The area under the curve of this panel was 0.853 (95% confidence interval = 0.804-0.894, sensitivity = 77.1%, specificity = 79.2%), and this was distinctly superior to any biomarker alone (all at P < 0.05). Similar results were observed in the validation set. Intriguingly, Kaplan-Meier analysis demonstrated that low expressions of SOX2OT and ANRIL were both associated with higher OS rate (P = 0.008 and 0.017, respectively), and SOX2OT could be used as an independent prognostic factor (P = 0.036). Taken together, our study demonstrated that the newly developed diagnostic panel consisting of SOX2OT, ANRIL, CEA, CYFRA21-1, and SCCA could be valuable in NSCLC diagnosis. LncRNA SOX2OT and ANRIL might be ideal biomarkers for NSCLC prognosis.

13.
J Cell Mol Med ; 22(5): 2838-2845, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516641

RESUMO

Cell-free long non-coding RNAs (lncRNAs) are stably present in urine and can serve as non-invasive biomarkers for cancer. We aimed to identify signatures of lncRNAs in urine for diagnosis and prognosis of bladder cancer (BC). Screening of lncRNAs by microarray analysis was performed using urine samples of 10 BC patients and 10 controls. Expressions of candidate lncRNAs were evaluated in the training and validation set including 230 BC patients and 230 controls by quantitative reverse transcription polymerase chain reaction (qRT-PCR). A two-lncRNA panel (uc004cox.4 and GAS5) was constructed and provided high diagnostic accuracy of BC with an area under the curve (AUC) of 0.885 (95% CI, 0.836-0.924). The AUCs of the lncRNA panel for Ta, T1 and T2-T4 were 0.843, 0.867 and 0.923, respectively, significantly higher than those of urine cytology (all P < .05). Kaplan-Meier analysis revealed that higher level of uc004cox.4 was associated with poor recurrence-free survival (RFS) of non-muscle invasive BC (NMIBC) (P = .008). Additionally, Cox regression analysis indicated that uc004cox.4 was an independent prognostic factor for RFS of NMIBC (P = .018). Taken together, our findings indicated that urinary lncRNA signatures possessed potential clinical value for BC diagnosis. Moreover, uc004cox.4 could provide prognostic information for NMIBC.

14.
ACS Appl Mater Interfaces ; 10(10): 8443-8450, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29481051

RESUMO

While the antibacterial properties of silver nanoparticles (AgNPs) have been demonstrated across a spectrum of bacterial pathogens, the effects of AgNPs on the beneficial bacteria are less clear. To address this issue, we compared the antibacterial activity of AgNPs against two beneficial lactobacilli ( Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei) and two common opportunistic pathogens ( Escherichia coli and Staphylococcus aureus). Our results demonstrate that those lactobacilli are highly susceptible to AgNPs, while the opportunistic pathogens are not. Acidic environment caused by the lactobacilli is associated with the bactericidal effects of AgNPs. Our mechanistic study suggests that the acidic growth environment of lactobacilli promotes AgNP dissolution and hydroxyl radical (•OH) overproduction. Furthermore, increases in silver ions (Ag+) and •OH deplete the glutathione pool inside the cell, which is associated with the increase in cellular reactive oxygen species (ROS). High levels of ROS may further induce DNA damage and lead to cell death. When E. coli and S. aureus are placed in a similar acidic environment, they also become more susceptible to AgNPs. This study provides a mechanistic description of a pH-Ag+-•OH bactericidal pathway and will contribute to the responsible development of products containing AgNPs.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29115913

RESUMO

Research on noble metal nanoparticles (NPs) able to scavenge reactive oxygen species (ROS) has undergone a tremendous growth recently. However, the interactions between ruthenium nanoparticles (Ru NPs) and ROS have never been systematically explored thus far. This research focused on the decomposition of hydrogen peroxide (H2O2), scavenging of hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), 2,2'-azino-bis(3-ethylbenzenothiazoline- 6-sulfonic acid ion (ABTS•+), and 1,1-diphenyl-2-picrylhydrazyl radical (•DPPH) in the presence of commercial Ru NPs using the electron spin resonance technique. In vitro cell studies demonstrated that Ru NPs have excellent biocompatibility and exert a cytoprotective effect against oxidative stress. These findings may spark fresh enthusiasm for the applications of Ru NPs under relevant physiologically conditions.


Assuntos
Depuradores de Radicais Livres/química , Nanopartículas Metálicas/química , Modelos Químicos , Espécies Reativas de Oxigênio/química , Rutênio/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxigênio Singlete/química , Superóxidos/química
16.
Oncotarget ; 8(39): 65132-65142, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029418

RESUMO

Circulating microRNAs (miRNAs) are emerging as novel noninvasive biomarkers for prediction of lymph node metastasis (LNM) in cancer. The aim of this study was to identify serum miRNA signatures for prediction and prognosis of LNM in gastric cancer (GC). MiSeq sequencing was performed for an initial screening of serum miRNAs in 10 GC patients with LNM, 10 patients without LNM and 10 healthy controls. Reverse transcription quantitative real-time PCR was applied to confirm concentration of candidate miRNAs using a training cohort (n = 279) and a validation cohort (n = 180). We identified a four-miRNA panel (miR-501-3p, miR-143-3p, miR-451a, miR-146a) by multivariate logistic regression model that provided high predictive accuracy for LNM with an area under the receiver operating characteristic curve (AUC) of 0.891 (95% CI, 0.840 to 0.930) in training set. Prospective evaluation of this panel revealed an AUC of 0.822 (95% CI, 0.758 to 0.875, specificity = 87.78%, sensitivity = 63.33%) in validation set. Moreover, Kaplan-Meier analysis showed that LNM patients with low miR-451a and miR-146a levels had worse overall survival (OS) (p < 0.05). In Cox regression analysis, miR-451a was independently associated with OS of LNM (p = 0.028). Our results suggested that use of serum miRNAs seems promising in estimating the probability GC patients harbor LNM and providing prognostic information for LNM.

17.
Sci Rep ; 7(1): 8197, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811636

RESUMO

Electrospun scaffolds with excellent mechanical properties, high specific surface area and a commendable porous network are widely used in tissue engineering. Improving the hydrophilicity and cell adhesion of hydrophobic substrates is the key point to enhance the effectiveness of electrospun scaffolds. In this study, polycaprolactone (PCL) fibrous membranes with appropriate diameter were selected and coated by mussel-inspired poly norepinephrine (pNE). And norepinephrine is a catecholamine functioning as a hormone and neurotransmitter in the human brain. The membrane with smaller diameter fibers, a relative larger specific surface area and the suitable pNE functionalization provided more suitable microenvironment for cell adhesion and proliferation both in vitro and in vivo. The regenerated muscle layer can be integrated well with fibrous membranes and surrounding tissues at the impaired site and thus the mechanical strength reached the value of native tissue. The underlying molecular mechanism is mediated via inhibiting myostatin expression by PI3K/AKT/mTOR hypertrophy pathway. The properly functionalized fibrous membranes hold the potential for repairing muscle injuries. Our current work also provides an insight for rational design and development of better tissue engineering materials for skeletal muscle regeneration.

18.
Oncotarget ; 8(25): 40832-40842, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28388561

RESUMO

Urinary microRNAs (miRNAs) are potential biomarkers for the noninvasive diagnosis of bladder cancer (BC). In this study, we aimed to develop a urinary miRNAs panel for diagnosing and predicting recurrence of BC. Genome-wide miRNAs analysis by deep sequencing followed by two phases of quantitative real-time PCR assays were performed on urine supernatant of 276 BC patients and 276 controls. We identified a seven-miRNA panel (miR-7-5p, miR-22-3p, miR-29a-3p, miR-126-5p, miR-200a-3p, miR-375, and miR-423-5p) that provided high diagnostic accuracy of BC with an AUC of 0.923 and 0.916 in training and validation set, respectively. The corresponding AUCs of this panel for Ta, T1 and T2-T4 were 0.864, 0.930 and 0.978, significantly higher than those of urine cytology, which were 0.531, 0.628 and 0.724, respectively (all p < 0.05). Moreover, Kaplan-Meier analysis showed that nonmuscle-invasive BC (NMIBC) patients with high miR-22-3p and low miR-200a-3p level had worse recurrence-free survival (RFS) (p = 0.002 and 0.040, respectively). Multivariate Cox regression analysis revealed that miR-22-3p and miR-200a-3p were independently associated with RFS of NMIBC (p = 0.024 and 0.008, respectively). In conclusion, our results suggested that urinary miRNAs may have considerable clinical value in diagnosis and recurrence prediction of BC.


Assuntos
Biomarcadores Tumorais/urina , MicroRNA Circulante/urina , Neoplasias da Bexiga Urinária/urina , Idoso , Biomarcadores Tumorais/genética , Sistema Livre de Células , Feminino , Humanos , Masculino , Recidiva Local de Neoplasia/urina , Prognóstico , Neoplasias da Bexiga Urinária/genética
19.
Pathol Res Pract ; 213(4): 327-332, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28215647

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is the most common liver malignancy, and ranks the fifth most prevalent malignant tumors worldwide. In general, HCC are detected until the disease is at an advanced stage and may miss the best chance for treatment. Thus, elucidating the molecular mechanisms is critical to clinical diagnosis and treatment for HCC. The purpose of this study was to identify dysregulated pathways of great potential functional relevance in the progression of HCC. MATERIALS AND METHODS: Microarray data of 72 pairs of tumor and matched non-tumor surrounding tissues of HCC were transformed to gene expression data. Differentially expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. Personalized dysregulated pathways were identified using individualized pathway aberrance score module. RESULTS: 169 differentially expressed genes (DEG) were obtained with |logFC|≥1.5 and P≤0.01. 749 dysregulated pathways were obtained with P≤0.01 in pathway statistics, and there were 93 DEG overlapped in the dysregulated pathways. After performing normal distribution analysis, 302 pathways with the aberrance probability≥0.5 were identified. By ranking pathway with aberrance probability, the top 20 pathways were obtained. Only three DEGs (TUBA1C, TPR, CDC20) were involved in the top 20 pathways. CONCLUSION: These personalized dysregulated pathways and overlapped genes may give new insights into the underlying biological mechanisms in the progression of HCC. Particular attention can be focused on them for further research.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Algoritmos , Carcinoma Hepatocelular/patologia , Análise por Conglomerados , Humanos , Neoplasias Hepáticas/patologia , Análise em Microsséries , Transdução de Sinais/fisiologia , Transcriptoma
20.
Med Sci Monit ; 23: 919-928, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216611

RESUMO

BACKGROUND Colorectal cancer (CRC) remains one of the most common lethal malignant tumors worldwide. The correlation between lncRNAs expression and CRC development has not been well identified in the recent literature. This study focused on the role of lncRNA-ROR on CRC progression and development. MATERIAL AND METHODS Quantitative real-time PCR (qRT-PCR) assay was conducted to identify the expression level of lncRNA-ROR. Cell proliferation and viability were examined by MTT assay and colony formation assay. Cell cycle distribution and apoptosis were detected by flow cytometry. Expressions of p53, p21, and FAS protein levels were assessed by Western blotting. CRC cells transfected with lncRNA-shRNA were injection into nude mice to identify the function of lncRNA-ROR on tumorigenesis in vivo. RESULTS The expression level of lncRNA-ROR was elevated in CRC tissues when compared to adjacent tissues (n=78). lncRNA-ROR knockdown significantly suppressed cell proliferation and viability, while lncRNA-ROR overexpression had the opposite effect. Decreased lncRNA-ROR expression enhanced cell apoptosis and triggered cell cycle arrest in G0/G1 phase, while elevated lncRNA-ROR expression presented the opposite effect. Protein levels of p53 and p53 target genes were affected by lncRNA-ROR in vitro, and downregulation of lncRNA-ROR impeded tumorigenesis in vivo. CONCLUSIONS Our study demonstrates that lncRNA-ROR participates in controlling CRC proliferation, viability, and apoptosis, partially by modulating p53, which provides potential and prospective therapeutic targets for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Técnicas de Silenciamento de Genes , Genes p53 , Células HCT116 , Células HT29 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estudos Prospectivos , Proteína Supressora de Tumor p53/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA