Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(1): 28-117, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

2.
ACS Sens ; 4(5): 1126-1137, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31046243

RESUMO

We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art. We then focus on the main bioimaging applications of SERS tags, showing a gradual evolution from two-dimensional studies to three-dimensional analysis. Recent improvements in sensitivity and multiplexing ability have enabled great advancements toward in vivo applications, e.g., highlighting tumor boundaries to guide surgery. In addition, the high level of biomolecule sensitivity reached by SERS tags promises an expansion toward biomarker detection in cases for which traditional methods offer limited reliability, as a consequence of the frequently low analyte concentrations.

3.
Chem Rec ; 18(7-8): 807-818, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29239136

RESUMO

Polymers and nanoparticles can be combined into different materials with applications in various fields like catalysis, biotechnology, or drug delivery, to cite just a few. Colloidal composites may vary significantly, ranging from a single nanoparticle stabilized by a polymer shell through a polymeric carrier decorated with hundreds of particles. We review here composite colloids comprising gold nanoparticles, with an emphasis in systems with potential application in surface enhanced Raman scattering (SERS). The focus is on selected strategies for synthesis and functionalization, such as: encapsulation of gold nanoparticles by amphiphilic polymers, polymeric matrices as nanoparticle carriers and smart polymer based composites. We stress the benefits derived from the combination of polymers and metal particles toward SERS, such as chemical and colloidal stabilization in complex environments, and collective optical effects through hot spot generation for optimized SERS enhancement or improved imaging tags.

4.
Beilstein J Nanotechnol ; 8: 2396-2409, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234575

RESUMO

Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line) were incubated with gold (AuNPs) and iron oxide nanoparticles (FeO x NPs) either alone or combined. Environmental scanning electron microscopy revealed that single NPs of both types bound within minutes on the cell surface but with a distinctive difference between FeO x NPs and AuNPs. Uptake analysis studies based on laser scanning microscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry revealed intracellular appearance of both NP types in all exposure scenarios and a time-dependent increase. This increase was higher for both AuNPs and FeO x NPs during co-exposure. Cells treated with endocytotic inhibitors recovered after co-exposure, which additionally hinted that two uptake mechanisms are involved. Cross-talk between uptake pathways is relevant for toxicological studies: Co-exposure acts as an uptake accelerant. If the goal is to maximize the cellular uptake, e.g., for the delivery of pharmaceutical agents, this can be beneficial. However, co-exposure should also be taken into account in the case of risk assessment of occupational settings. The demonstration of co-exposure-invoked pathway interactions reveals that synergetic nanoparticle effects, either positive or negative, must be considered for nanotechnology and nanomedicine in particular to develop to its full potential.

5.
Nanoscale ; 9(27): 9467-9480, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28660946

RESUMO

The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging. The nanoparticles are characterized as contrast agents for different imaging techniques, including X-ray computed tomography (CT), T2-weighted nuclear magnetic resonance imaging (MRI), photoacoustic imaging (PA), dark-field and bright-field optical microscopy, transmission electron microscopy (TEM), and surface enhanced Raman spectroscopy (SERS). We discuss the effect of particle size and morphology on their performance as contrast agents and show the advantage of a Janus configuration. Additionally, the uptake of nanoparticles by cells can be simultaneously visualized in dark- and bright-field optical microscopy, SERS mapping, and electron microscopy. These complementary techniques allow a complete view of cell uptake in an artifact-free manner, with multiplexing capabilities, and with extra information regarding the nanoparticles' fate inside the cells. Altogether, the results obtained with these non-invasive techniques show the high versatility of these nanoparticles, the advantages of a Janus configuration, and their high potential in multipurpose biomedical applications.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Ouro/química , Imagem Multimodal , Nanopartículas/química , Imagem por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Técnicas Fotoacústicas , Análise Espectral Raman , Tomografia Computadorizada por Raios X
6.
ACS Nano ; 11(8): 7807-7820, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640995

RESUMO

Exposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e., viability assays, gene expression profiles, etc., neglecting that the presence of NPs can also drastically affect cellular morphology. In the case of polymer-coated Au NPs, we demonstrate that upon NP internalization, cells undergo lysosomal swelling, alterations in mitochondrial morphology, disturbances in actin and tubulin cytoskeleton and associated signaling, and reduction of focal adhesion contact area and number of filopodia. Appropriate imaging and data treatment techniques allow for quantitative analyses of these concentration-dependent changes. Abnormalities in morphology occur at similar (or even lower) NP concentrations as the onset of reduced cellular viability. Cellular morphology is thus an important quantitative indicator to verify harmful effects of NPs to cells, without requiring biochemical assays, but relying on appropriate staining and imaging techniques.


Assuntos
Coloide de Ouro/química , Coloide de Ouro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citometria de Fluxo , Adesões Focais/efeitos dos fármacos , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Fluorescência , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo
7.
Chem Soc Rev ; 46(13): 3866-3885, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28447698

RESUMO

The optimization of the enhancement of Raman scattering by plasmonic effects is largely determined by the properties of the enhancing substrates. The main parameters behind this effect are related to the morphology of plasmonic nanoparticles and their relative distribution within the substrate. We focus this tutorial review on the effects of nanoparticle morphology, for the particular case of anisotropic metal nanoparticles. Anisotropy in silver and gold nanoparticles offers the possibility to tailor their plasmonic properties and intrinsic electromagnetic "hotspots". We describe the effect of varying particle size and shape on the SERS signal, focusing on the most common anisotropic morphologies used for SERS. Especial emphasis is made on existing comparative studies that shed light on the effect of nanoparticle anisotropy on their enhancement capabilities. We aim at providing a general perspective toward understanding the general key factors and highlighting the difficulty in quantitatively determining SERS performance.

8.
J Colloid Interface Sci ; 482: 260-266, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572895

RESUMO

It is qualitatively demonstrated that the intracellular localization of particles depends on the way they are administered, their basic physicochemical properties, as well as on incubation time. For this purpose cells were exposed to fluorescently-labelled particles of different size under different exposure scenarios including incubation, microinjection, electroporation, and sonoporation. After co-exposure to cells the intracellular distribution of different particles was imaged with multicolor fluorescence microscopy. Qualitative co-localization analysis demonstrates, that different particles to which cells have been exposed in different ways did not automatically reside in the same compartment. As intracellular particle localization may influence potential toxic effects of particles on cells, studies attempting to unravel molecular mechanisms of toxicity should involve the determination of the intracellular particle distribution.


Assuntos
Corantes Fluorescentes/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Células A549 , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eletroporação , Corantes Fluorescentes/química , Células HeLa , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Microinjeções , Microscopia de Fluorescência , Nanopartículas/química , Tamanho da Partícula , Ondas Ultrassônicas
9.
Faraday Discuss ; 191: 47-59, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27419362

RESUMO

Multicomponent nanoparticles are of particular interest due to a unique combination of properties at the nanoscale, which make them suitable for a wide variety of applications. Among them, Janus nanoparticles, presenting two distinct surface regions, can lead to specific interactions with interfaces, biomolecules, membranes etc. We report the synthesis of Janus nanoparticles comprising iron oxide nanospheres and gold nanostars, through two consecutive seed-mediated-growth steps. Electron tomography combining HAADF-STEM and EDX mapping has been performed to evaluate the spatial distribution of the two components of the nanoparticle, showing their clear separation in a Janus morphology. Additionally, SERS measurements assisted by magnetic separation were carried out to assess the application of combined plasmonic and magnetic properties for sensing.

10.
J Mater Chem B ; 4(6): 1150-1155, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28261481

RESUMO

Polymer coated gold nanospheres are proposed as a tumor selective carrier for the anticancer drug doxorubicin. Thiolated polyethyleneglycol (PEG-SH) and an inulin-amino derivative based copolymer (INU-EDA) were used as stabilizing and coating materials for 40 nm gold nanospheres. The resulting polymer coated gold nanospheres (Au@PEG-INU) showed excellent physicochemical stability and potential stealth like behavior. The system was loaded with doxorubicin (Au@PEG-INU/Doxo) and its cytotoxicity profile was evaluated on human cervical cancer cells (HeLa) and lung cancer cells (A549), as compared to Au@PEG-INU and doxorubicin alone. Cytotoxicity assays showed that the system is able to drastically reduce cell viability upon incubation for 3 days. This result was supported by the ability of Au@PEG-INU/Doxo to be internalized by cancer cells and to release doxorubicin, as assessed by fluorescence microscopy. Finally, a cancer/non cancer cell co-culture model was used to display the advantageous therapeutic effects of the proposed system with respect to doxorubicin alone, thereby demonstrating the ability of Au@PEG-INU/Doxo to preferentially accumulate in tumor cells due to their enhanced metabolism, and to selectively kill target cells.

11.
Langmuir ; 31(33): 9205-13, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26258732

RESUMO

We present a general route for the transfer of Au and Ag nanoparticles of different shapes and sizes, from water into various organic solvents. The experimental conditions for each type of nanoparticles were optimized by using a combination of thiolated poly(ethylene glycol) and a hydrophobic capping agent, such as dodecanethiol. The functionalized nanoparticles were readily transferred into organic dispersions with long-term stability (months). Such organic dispersions efficiently spread out on water, leading to self-assembly at the air/liquid interface into extended nanoparticle arrays which could in turn be transferred onto solid substrates. The dense close packing in the obtained nanoparticle monolayers results in extensive plasmon coupling, rendering them efficient substrates for surface-enhanced Raman scattering spectroscopy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Prata/química
12.
Acc Chem Res ; 46(3): 743-9, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22786674

RESUMO

Nanomaterials offer opportunities to construct novel compounds for many different fields. Applications include devices for energy, including solar cells, batteries, and fuel cells, and for health, including contrast agents and mediators for photodynamic therapy and hyperthermia. Despite these promising applications, any new class of materials also bears a potential risk for human health and the environment. The advantages and innovations of these materials must be thoroughly compared against risks to evaluate each new nanomaterial. Although nanomaterials are often used intentionally, they can also be released unintentionally either inside the human body, through wearing of a prosthesis or the inhalation of fumes, or into the environment, through mechanical wear or chemical powder waste. This possibility adds to the importance of understanding potential risks from these materials. Because of fundamental differences in nanomaterials, sound risk assessment currently requires that researchers perform toxicology studies on each new nanomaterial. However, if toxicity could be correlated to the basic physicochemical properties of nanomaterials, those relationships could allow researchers to predict potential risks and design nanomaterials with minimum toxicity. In this Account we describe the physicochemical properties of nanoparticles (NPs) and how they can be determined and discuss their general importance for cytotoxicity. For simplicity, we focus primarily on in vitro toxicology that examines the interaction of living cells with engineered colloidal NPs with an inorganic core. Serious risk assessment of NPs will require additional in vivo studies. Basic physicochemical properties of nanoparticulate materials include colloidal stability, purity, inertness, size, shape, charge, and their ability to adsorb environmental compounds such as proteins. Unfortunately, the correlation of these properties with toxicity is not straightforward. First, for NPs released either unintentionally or intentionally, it can be difficult to pinpoint these properties in the materials. Therefore, researchers typically use NP models with better defined properties, which don't include the full complexity of most industrially relevant materials. In addition, many of these properties are strongly mutually connected. Therefore, it can be difficult to vary individual properties in NP models while keeping the others constant.


Assuntos
Coloides/química , Nanopartículas/toxicidade , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fenômenos Químicos , Estabilidade de Medicamentos , Humanos , Modelos Biológicos , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
13.
Trends Biotechnol ; 30(10): 499-511, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884769

RESUMO

Antibacterial agents are very important in the textile industry, water disinfection, medicine, and food packaging. Organic compounds used for disinfection have some disadvantages, including toxicity to the human body, therefore, the interest in inorganic disinfectants such as metal oxide nanoparticles (NPs) is increasing. This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity. Such improved antibacterial agents locally destroy bacteria, without being toxic to the surrounding tissue. We also provide an overview of opportunities and risks of using NPs as antibacterial agents. In particular, we discuss the role of different NP materials.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Nanopartículas , Biotecnologia/métodos , Biotecnologia/tendências , Humanos , Compostos Inorgânicos/química , Compostos Inorgânicos/farmacologia , Metais/química , Metais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA