Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
2.
Nat Commun ; 12(1): 4852, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381028

RESUMO

Oncogenic activation of KRAS and its surrogates is essential for tumour cell proliferation and survival, as well as for the development of protumourigenic microenvironments. Here, we show that the deubiquitinase USP12 is commonly downregulated in the KrasG12D-driven mouse lung tumour and human non-small cell lung cancer owing to the activation of AKT-mTOR signalling. Downregulation of USP12 promotes lung tumour growth and fosters an immunosuppressive microenvironment with increased macrophage recruitment, hypervascularization, and reduced T cell activation. Mechanistically, USP12 downregulation creates a tumour-promoting secretome resulting from insufficient PPM1B deubiquitination that causes NF-κB hyperactivation in tumour cells. Furthermore, USP12 inhibition desensitizes mouse lung tumour cells to anti-PD-1 immunotherapy. Thus, our findings propose a critical component downstream of the oncogenic signalling pathways in the modulation of tumour-immune cell interactions and tumour response to immune checkpoint blockade therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/imunologia , Ubiquitina Tiolesterase/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiocinas/metabolismo , Regulação para Baixo , Humanos , Tolerância Imunológica , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteína Fosfatase 2C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores
3.
Front Immunol ; 12: 701006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349762

RESUMO

Immunotherapy aiming at suppressing tumor development by relying on modifying or strengthening the immune system prevails among cancer treatments and points out a new direction for cancer therapy. B7 homolog 3 protein (B7-H3, also known as CD276), a newly identified immunoregulatory protein member of the B7 family, is an attractive and promising target for cancer immunotherapy because it is overexpressed in tumor tissues while showing limited expression in normal tissues and participating in tumor microenvironment (TME) shaping and development. Thus far, numerous B7-H3-based immunotherapy strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Herein, we present the expression and biological function of B7-H3 in distinct cancer and normal cells, as well as B7-H3-mediated signal pathways in cancer cells and B7-H3-based tumor immunotherapy strategies. This review provides a comprehensive overview that encompasses B7-H3's role in TME to its potential as a target in cancer immunotherapy.

4.
Nat Commun ; 12(1): 5091, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429415

RESUMO

Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Camundongos Mutantes Neurológicos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Remielinização/fisiologia , 5-Metilcitosina/análogos & derivados , Animais , Ciclo Celular , Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/genética , Genoma , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Organogênese , Proteínas Proto-Oncogênicas/genética
5.
Oncogene ; 40(36): 5482-5494, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294846

RESUMO

K-RAS mutation and molecular alterations of its surrogates function essentially in lung tumorigenesis and malignant progression. However, it remains elusive how tumor-promoting and deleterious events downstream of K-RAS signaling are coordinated in lung tumorigenesis. Here, we show that USP16, a deubiquitinase involved in various biological processes, functions as a promoter for the development of K-RAS-driven lung tumor. Usp16 deletion significantly attenuates K-rasG12D-mutation-induced lung tumorigenesis in mice. USP16 upregulation upon RAS activation averts reactive oxygen species (ROS)-induced p38 activation that would otherwise detrimentally influence the survival and proliferation of tumor cells. In addition, USP16 interacts with and deubiquitinates JAK1, and thereby promoting lung tumor growth by augmenting JAK1 signaling. Therefore, our results reveal that USP16 functions critically in the K-RAS-driven lung tumorigenesis through modulating the strength of p38 and JAK1 signaling.

6.
J Exp Clin Cancer Res ; 40(1): 241, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34303383

RESUMO

As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.

7.
Front Immunol ; 12: 697083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295338

RESUMO

Cancer immunotherapy (CIT) is considered a revolutionary advance in the fight against cancer. The complexity of the immune microenvironment determines the success or failure of CIT. Long non-coding RNA (lncRNA) is an extremely versatile molecule that can interact with RNA, DNA, or proteins to promote or inhibit the expression of protein-coding genes. LncRNAs are expressed in many different types of immune cells and regulate both innate and adaptive immunity. Recent studies have shown that the discovery of lncRNAs provides a novel perspective for studying the regulation of the tumor immune microenvironment (TIME). Tumor cells and the associated microenvironment can change to escape recognition and elimination by the immune system. LncRNA induces the formation of an immunosuppressive microenvironment through related pathways, thereby controlling the escape of tumors from immune surveillance and promoting the development of metastasis and drug resistance. Using lncRNA as a therapeutic target provides a strategy for studying and improving the efficacy of immunotherapy.

9.
Front Immunol ; 12: 690565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054880

RESUMO

Immunotherapy has become an indispensable part of the comprehensive treatment of hepatocellular carcinoma (HCC). Immunotherapy has proven effective in patients with early HCC, advanced HCC, or HCC recurrence after liver transplantation. Clinically, the most commonly used immunotherapy is immune checkpoint inhibition using monoclonal antibodies, such as CTLA-4 and PD-1. However, it cannot fundamentally solve the problems of a weakened immune system and inactivation of immune cells involved in killing tumor cells. T cells can express tumor antigen-recognizing T cell receptors (TCRs) or chimeric antigen receptors (CARs) on the cell surface through gene editing to improve the specificity and responsiveness of immune cells. According to previous studies, TCR-T cell therapy is significantly better than CAR-T cell therapy in the treatment of solid tumors and is one of the most promising immune cell therapies for solid tumors so far. However, its application in the treatment of HCC is still being researched. Technological advancements in induction and redifferentiation of induced pluripotent stem cells (iPSCs) allow us to use T cells to induce T cell-derived iPSCs (T-iPSCs) and then differentiate them into TCR-T cells. This has allowed a convenient strategy to study HCC models and explore optimal treatment strategies. This review gives an overview of the major advances in the development of protocols to generate neoantigen-specific TCR-T cells from T-iPSCs. We will also discuss their potential and challenges in the treatment of HCC.

11.
Pharmacol Ther ; 226: 107861, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33901506

RESUMO

Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.

12.
Biochem Pharmacol ; 186: 114487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647264

RESUMO

Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.


Assuntos
Engenharia Química/métodos , Exossomos/imunologia , Imunoterapia/métodos , Nanopartículas/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Animais , Exossomos/metabolismo , Humanos , Nanopartículas/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
13.
J Nanobiotechnology ; 19(1): 54, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627152

RESUMO

BACKGROUND: Gene and chemical therapy has become one of the rising stars in the field of molecular medicine during the last two decades. However, there are still numerous challenges in the development of efficient, targeted, and safe delivery systems that can avoid siRNA degradation and reduce the toxicity and adverse effects of chemotherapy medicine. RESULTS: In this paper, a highly efficient AS1411 aptamer modified, dsDNA and MMP-2 cleavable peptide-fabricated gold nanocage vehicle, which could load doxorubicin hydrochloride (DOX) and siRNAs to achieve a combination of tumor responsive genetic therapy, chemotherapy, and photothermal treatment is presented. Our results show that this combined treatment achieved targeted gene silencing and tumor inhibition. After nearly one month of treatment with DOX-loaded Au-siRNA-PAA-AS1411 nanoparticles with one dose every three days in mice, a synergistic effect promoting the eradication of long-lived tumors was observed along with an increased survival rate of mice. The combined genetic, chemotherapeutic, and photothermal treatment group exhibited more than 90% tumor inhibition ratio (tumor signal) and a ~ 67% survival rate compared with a 30% tumor inhibition ratio and a 0% survival rate in the passive genetic treatment group. CONCLUSIONS: The development of nanocarriers with double-stranded DNA and MMP-2 cleavable peptides provides a new strategy for the combined delivery of gene and chemotherapy medicine. Au-siRNA-PAA-AS1411 exerts high anticancer activities on lung cancer, indicating immense potentials for clinical application.


Assuntos
Técnicas de Transferência de Genes , Ouro/química , Ouro/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas/química , RNA Interferente Pequeno/farmacologia , Animais , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Pulmão , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligodesoxirribonucleotídeos , Tamanho da Partícula , Taxa de Sobrevida
14.
Front Endocrinol (Lausanne) ; 11: 546350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343506

RESUMO

The theory holds that the anterior pituitary in mammals receives humoral regulation. Previous studies have reported that the pars distalis of the anterior pituitary of several mammalian species contains substance P-, calcitonin gene-related peptide (CGRP)-, and galanin-like immunoreactive nerve fibers, but the origins of these nerve fibers are unclear. Removal of the pituitary gland, also called hypophysectomy, involves methods that access the pituitary gland via the transauricular or parapharyngeal pathways. However, these methods are not applicable for viral tracer injection to investigate the innervation of the anterior pituitary. The transauricular technique leads to inaccuracies in locating the pituitary gland, while the parapharyngeal approach causes high mortality in animals. Here, we introduce a protocol that accesses the pituitary gland in the rat via the transsphenoidal pathway. This method imitates surgical manipulations such as endotracheal intubation and sphenoid bone drilling, which involve the use of custom-made devices. Using the transsphenoidal pathway greatly improves the survival rate of rats because no additional dissection of blood vessels and nerves is required. Moreover, the pituitary gland can be viewed clearly and directly during the operation, making it possible to accurately inject pseudorabies virus (PRV) 152-expressing enhanced green fluorescent protein (EGFP) into the anterior or posterior pituitary, respectively. After injecting PRV 152 into the anterior pituitary, we found no evidence of direct innervation of the anterior pituitary in the rat brain. However, PRV 152 injection into the posterior pituitary revealed retrograde transneuronal cell bodies in many brain areas, including the CA1 field of the hippocampus, the basolateral amygdaloid nucleus, posterior part (BLP), the arcuate hypothalamic nucleus (Arc), the dorsal portion of the dorsomedial hypothalamic nucleus (DMD), the suprachiasmatic nucleus (SCh), and the subfornical organ (SFO). In the present study, we provide a description of a possible model of hypophysectomy or pituitary injection, and identify brain regions involved in regulating the rat pituitary gland using transneuronal retrograde cell body labeling with PRV.


Assuntos
Vetores Genéticos/administração & dosagem , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/citologia , Hipófise/citologia , Hipófise/inervação , Animais , Proteínas de Fluorescência Verde/fisiologia , Herpesvirus Suídeo 1/fisiologia , Masculino , Vias Neurais/citologia , Ratos Sprague-Dawley , Osso Esfenoide/cirurgia
15.
Front Immunol ; 11: 577869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123161

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy. Surgery and chemotherapy are the primary treatments for ovarian cancer; however, patients often succumb to recurrence with chemotherapeutic resistance within several years after the initial treatment. In the past two decades, immunotherapy has rapidly developed, and has revolutionized the treatment of various types of cancer. Despite the fact that immunotherapy response rates among ovarian cancer patients remain modest, treatment with immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR)- and TCR-engineered T cells is rapidly developing. Therapeutic efficiency could be improved significantly if immunotherapy is included as an adjuvant therapy, in combination with chemotherapy, radiation therapy, and the use of anti-angiogenesis drugs, and poly ADP ribose polymerase inhibitors (PARPi). Newly developed technologies that identify therapeutic targets, predict treatment efficacy, rapidly screen potential immunotherapy drugs, provide neoadjuvant immunotherapy, and utilize nanomedicine technology provide new opportunities for the treatment of ovarian cancer, and have the potential to prolong patient survival. However, important issues that may hinder the efficacy of such approaches, including hyperprogressive disease (HPD), immunotherapy-resistance, and toxicity of the treatments, including neurotoxicity, must be taken into account and addressed for these therapies to be effective.


Assuntos
Imunoterapia , Terapia Neoadjuvante , Neoplasias Ovarianas/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Quimioterapia Adjuvante , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia Adotiva , Terapia Neoadjuvante/efeitos adversos , Terapia Viral Oncolítica , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Resultado do Tratamento , Microambiente Tumoral
16.
Cell Biosci ; 10: 110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974003

RESUMO

Ten-eleven translocation (TET) proteins, encoding dioxygenase for DNA hydroxymethylation, are important players in nervous system development and disease. In addition to their proverbial enzymatic role, TET proteins also possess non-enzymatic activity and function in multiple protein-protein interaction networks, which remains largely unknown during oligodendrocyte differentiation. To identify partners of TET1 in the myelinating cells, we performed proteome-wide analysis using co-immunoprecipitation coupled to mass spectrometry (IP-MS) in purified oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs), respectively. Following a stringent selection of MS data based on identification reliability and protein enrichment, we identified a core set of 1211 partners that specifically interact with TET1 within OPCs and OLs. Analysis of the biological process and pathways associated with TET1-interacting proteins indicates a significant enrichment of proteins involved in regulation of cellular protein localization, cofactor metabolic process and regulation of catabolic process, et al. We further validated TET1 interactions with selected partners. Overall, this comprehensive analysis of the endogenous TET1 interactome during oligodendrocyte differentiation suggest its novel mechanism in regulating oligodendrocyte homeostasis and provide comprehensive insight into the molecular pathways associated with TET1.

17.
Am J Cancer Res ; 10(8): 2242-2257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905502

RESUMO

The high mortality and poor clinical prognosis of glioblastoma multiforme (GBM) are concerns for many GBM patients as well as clinicians and researchers. The lack of a preclinical model that can easily be established and accurately recapitulate tumour biology and the tumour microenvironment further complicates GBM research and its clinical translation. GBM organoids (GBOs) are promising high-fidelity models that can be applied to model the disease, develop drugs, establish a living biobank, mimic therapeutic responses and explore personalized therapy. However, GBO models face some challenges, including deficient immune responses, absent vascular system and controversial reliability. In recent years, considerable progress has been achieved in the improvement of brain tumour organoid models and research based on such models. In addition to the traditional cultivation method, these models can be cultivated via genetic engineering and co-culture of cerebral organoids and GBM. In this review, we summarize the applications of GBM organoids and related advances and provide our opinions on associated limitations and challenges.

18.
Signal Transduct Target Ther ; 5(1): 166, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843638

RESUMO

Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, ß-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.

19.
ACS Chem Neurosci ; 11(17): 2489-2491, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32840109

RESUMO

Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a severe public health problem with a high rate of morbidity and mortality. A mounting number of clinical investigations illustrate that COVID-19 patients suffer from neurologic conditions in addition to respiratory symptoms. In a recent article, Yuen and colleagues present the first experimental evidence of SARS-CoV-2 infection in the human central nervous system using induced pluripotent stem cells (iPSCs)-derived platform including human neural progenitor cells, neurospheres, and three-dimensional brain organoids (Yuen, K.Y., and Huang, J.D. et al. (2020) Cell Res. DOI: 10.1038/s41422-020-0390-x).


Assuntos
Betacoronavirus , Encéfalo/patologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Células-Tronco Pluripotentes Induzidas/patologia , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , Encéfalo/virologia , COVID-19 , Estudos de Viabilidade , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Organoides/patologia , Organoides/virologia , Pandemias , SARS-CoV-2
20.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824974

RESUMO

Glioblastoma is the most lethal intracranial primary malignancy by no optimal treatment option. Cancer immunotherapy has achieved remarkable survival benefits against various advanced tumors, such as melanoma and non-small-cell lung cancer, thus triggering great interest as a new therapeutic strategy for glioblastoma. Moreover, the central nervous system has been rediscovered recently as a region for active immunosurveillance. There are vibrant investigations for successful glioblastoma immunotherapy despite the fact that initial clinical trial results are somewhat disappointing with unique challenges including T-cell dysfunction in the patients. This review will explore the potential of current immunotherapy modalities for glioblastoma treatment, especially focusing on major immune checkpoint inhibitors and the future strategies with novel targets and combo therapies. Immune-related adverse events and clinical challenges in glioblastoma immunotherapy are also summarized. Glioblastoma provides persistent difficulties for immunotherapy with a complex state of patients' immune dysfunction and a variety of constraints in drug delivery to the central nervous system. However, rational design of combinational regimens and new focuses on myeloid cells and novel targets to circumvent current limitations hold promise to advent truly viable immunotherapy for glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...