Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
2.
New Phytol ; 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724229

RESUMO

FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.

3.
Front Cell Dev Biol ; 9: 753787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765604

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in animals and humans, which transmit various signals from the extracellular environment into cells. Studies have reported that several GPCRs transmit the same signal; however, the mechanism is unclear. In the present study, we identified all 122 classical GPCRs from the genome of Helicoverpa armigera, a lepidopteran pest species. Twenty-four GPCRs were identified as upregulated at the metamorphic stage by comparing the transcriptomes of the midgut at the metamorphic and feeding stages. Nine of them were confirmed to be upregulated at the metamorphic stage. RNA interference in larvae revealed the prolactin-releasing peptide receptor (PRRPR), smoothened (SMO), adipokinetic hormone receptor (AKHR), and 5-hydroxytryptamine receptor (HTR) are involved in steroid hormone 20-hydroxyecdysone (20E)-promoted pupation. Frizzled 7 (FZD7) is involved in growth, while tachykinin-like peptides receptor 86C (TKR86C) had no effect on growth and pupation. Via these GPCRs, 20E regulated the expression of different genes, respectively, including Pten (encoding phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase), FoxO (encoding forkhead box O), BrZ7 (encoding broad isoform Z7), Kr-h1 (encoding Krüppel homolog 1), Wnt (encoding Wingless/Integrated) and cMyc, with hormone receptor 3 (HHR3) as their common regulating target. PRRPR was identified as a new 20E cell membrane receptor using a binding assay. These data suggested that 20E, via different GPCRs, regulates different gene expression to integrate growth and development.

4.
Plant Physiol ; 187(1): 247-262, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618133

RESUMO

The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.

5.
Front Pharmacol ; 12: 668887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630073

RESUMO

Jujuboside B (JB) is one of the main biologically active ingredients extracted from Zizyphi Spinosi Semen (ZSS), a widely used traditional Chinese medicine for treating insomnia and anxiety. Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. The purpose of this study was to examine whether JB could prevent breast cancer and its underlying mechanism. First, we reported that JB induced apoptosis and autophagy in MDA-MB-231 and MCF-7 human breast cancer cell lines. Further mechanistic studies have revealed that JB-induced apoptosis was mediated by NOXA in both two cell lines. Moreover, the AMPK signaling pathway plays an important role in JB-induced autophagy in MCF-7. To confirm the anti-breast cancer effect of JB, the interaction of JB-induced apoptosis and autophagy was investigated by both pharmacological and genetic approaches. Results indicated that autophagy played a pro-survival role in attenuating apoptosis. Further in vivo study showed that JB significantly suppressed the growth of MDA-MB-231 and MCF-7 xenografts. In conclusion, our findings indicate that JB exerts its anti-breast cancer effect in association with the induction of apoptosis and autophagy.

6.
Adv Mater ; : e2107211, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648207

RESUMO

Owing to their insufficient light absorption and charge transport, 2D Ruddlesden-Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D-like phase to 2D phases, and X-ray diffraction (XRD) studies reveal that FA-based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier-diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ-phase formation of pure FA-based 2D PSCs. As a result, both FA/MA mixed and pure FA-based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA-based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low-dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA-based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure-FA-based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability.

7.
Cancer Med ; 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617407

RESUMO

OBJECTIVES: To explore the clinical features, molecular characteristics, and immune landscape of lung adenocarcinoma patients with KEAP1/NFE2L2/CUL3 mutations. METHODS: The multi-omics data from the GDC-TCGA LUAD project of The Cancer Genome Atlas (TCGA) database were downloaded from the Xena browser. The estimate of the immune infiltration was implemented by using the GSVA analysis and CIBERSORT. The status of KEAP1/NFE2L2/CUL3 mutation in 50 LUAD samples of our department was detected by using Sanger sequencing, following the relative expression level of differentially expressed genes (DEGs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) was validated by IHC and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The Kaplan-Meier and multivariable Cox regression analyses demonstrated that KEAP1/NFE2L2/CUL3 mutations had independent prognostic value for OS and PFS in LUAD patients. The differential analysis detected 207 upregulated genes (like GSR/UGT1A6) and 447 downregulated genes (such as PIGR). GO, KEGG, and GSEA analyses demonstrated that DEGs were enriched in glutamate metabolism and the immune response. The constructed ceRNA network shows the linkage of differential lncRNAs and mRNAs. Three hundred and nine somatic mutations were detected, alterations in immune infiltration DNA methylations and stemness scores were also founded between the two groups. Eight mutated LUAD patients were detected by Sanger DNA sequencing in 50 surgical patients. GSR and UGT1A6 were validated to express higher in the Mut group, whereas the expression of PIGR was restrained. Furthermore, the IHC staining conducted on paraffin-embedded tissue emphasizes the consistency of our result. CONCLUSION: This research implemented the comprehensive analysis of KEAP1/NFE2L2/CUL3 somatic mutations in the LUAD patients. Compared with the wild type of LUAD patients, the Mut group shows a large difference in clinical features, RNA sequence, DNA methylation, and immune infiltrations, indicating complex mechanism oncogenesis and also reveals potential therapeutic targets.

8.
Eur J Med Chem ; 227: 113897, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34649064

RESUMO

Microtubule target agents (MTAs) are widely-used clinical anti-cancer drugs for decades, but the acquired drug resistance severely restricted their application. Thioredoxin reductases (TrxR) was reported to be overexpressed in most tumors and closely related to high risk of cancer recurrence and drug resistance, making it a potential target for anticancer drug discovery. Multi-target-directed ligands (MTDLs) by a single molecule provide a logical and alternative approach to drug combinations. In this work, based on the structure-activity relationships obtained in our previous study, some structure modifications were performed. On one hand, the retained skeleton structure of MTAs endowed its tubulin polymerization inhibition activity, on the other hand, the selenium-containing structure and α,ß-unsaturated ketone moiety endowed the TrxR inhibition activity. As results, the newly obtained compounds exhibited superior anti-proliferative activities towards various human cancer cells and drug-resistance cells, and displayed high selectivity towards various human normal cells. The mechanism study revealed that the dual effect of cell cycle arrest triggered by targeting tubulin and the abnormal accumulation of ROS caused by TrxR inhibition eventually lead to cell apoptosis. Notably, compared with the MTA agents CA-4P, and the TrxR inhibitor Ethaselen, the optimized compound 14c, which served as dual-targeting inhibitor of tubulin and TrxR, exerted greatly improved in vivo anti-tumor activity. In summary, 14c deserved further consideration for cancer therapy.

9.
Int J Mol Med ; 48(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608503

RESUMO

Atherosclerosis and related cardiovascular diseases pose severe threats to human health worldwide. There is evidence to suggest that at least 50% of foam cells in atheromas are derived from vascular smooth muscle cells (VSMCs); the first step in this process involves migration to human atherosclerotic lesions. Long non­coding RNAs (lncRNAs) have been found to play significant roles in diverse biological processes. The present study aimed to investigate the role of lncRNAs in VSMCs. The expression of lncRNAs or mRNAs was detected using reverse transcription­quantitative polymerase chain reaction. The Gene Expression Omnibus datasets in the NCBI portal were searched using the key words 'Atherosclerosis AND tissue AND Homo sapiens' and the GSE12288 dataset. Gene expression in circulating leukocytes was measured to identify patients with coronary artery disease (CAD) or controls, and used to analyze the correlation coefficient and expression profiles. The protein level of ATP­binding cassette sub­family G member 1 (ABCG1) and matrix metalloproteinase (MMP)3 was determined using immunohistochemistry and western blot analysis. The analysis of mouse aortic roots was performed using Masson's and Oil Red O staining. The expression of lncRNA AL355711, ABCG1 and MMP3 was found to be higher in human atherosclerotic plaques or in patients with atherosclerotic CAD. The correlation analysis revealed that ABCG1 may be involved in the regulation between lncRNA AL355711 and MMP3 in atherosclerotic CAD. The knockdown of lncRNA AL355711 inhibited ABCG1 transcription and smooth muscle cell migration. In addition, lncRNA AL355711 was found to regulate MMP3 expression through the ABCG1 pathway. The expression of ABCG1 and MMP3 was found to be high in an animal model of atherosclerosis. The results indicated that lncRNA AL355711 promoted VSMC migration and atherosclerosis partly via the ABCG1/MMP3 pathway. On the whole, the present study demonstrates that the inhibition of lncRNA AL355711 may serve as a novel therapeutic target for atherosclerosis. lncRNA AL355711 in circulating leukocytes may be a novel biomarker for atherosclerotic CAD.

10.
Mol Ther Oncolytics ; 23: 107-123, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34703880

RESUMO

Metabolic reprogramming is a core hallmark of cancer and is key for tumorigenesis and tumor progression. Investigation of metabolic perturbation by anti-cancer compounds would allow a thorough understanding of the underlying mechanisms of these agents and identification of new anti-cancer targets. Here, we demonstrated that the administration of oleanolic acid (OA) rapidly altered cancer metabolism, particularly suppressing the purine salvage pathway (PSP). PSP restoration significantly opposed OA-induced DNA replication and cell proliferation arrest, underscoring the importance of this pathway for the anti-cancer activity of OA. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and 5'-nucleotidase (5'-NT), two metabolic enzymes essential for PSP activity, were promptly degraded by OA via the lysosome pathway. Mechanistically, OA selectively targeted superoxide dismutase 1 (SOD1) and yielded reactive oxygen species (ROS) to activate the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/macroautophagy pathway, thus eliciting lysosomal degradation of HGPRT and 5'-NT. Furthermore, we found that the PSP was overactivated in human lung and breast cancers, with a negative correlation with patient survival. The results of this study elucidated a new anti-cancer mechanism of OA by restraining the PSP via the SOD1/ROS/AMPK/mTORC1/macroautophagy/lysosomal pathway. We also identified the PSP as a new target for cancer treatment and highlighted OA as a potential therapeutic agent for cancers with high PSP activity.

11.
Shanghai Kou Qiang Yi Xue ; 30(4): 384-388, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34693431

RESUMO

PURPOSE: To evaluate the effect of full-zirconia single-tooth molar implant-supported restorations with angulated screw channel abutments. METHODS: Seventy-six patients with a single missing tooth in the posterior region of the maxilla and mandible underwent dental implants from March 2016 to March 2018 were enrolled. After 3 months, each patient received a full-contour screw-retained zirconia restoration with angulated screw channel abutment. Modified sulcus bleeding index (MSBI), modified plaque index (mPLI), periodontal probing depth (PD), marginal bone levels (MBLs) and mid-buccal mucosal levels (MBMLs) were recorded at the implantation moment (T0), four weeks (T1), one year (T2) and two years (T3) after treatment. During the follow-up period, the incidence of implant defects, survival rate and porcelain fracture were recorded. The data were processed using SPSS 23.0 software package. RESULTS: Of the 76 patients, 9 did not have a complete follow-up record (two of the implants failed before restoration, two patients had bilateral first molars missing, and five were lost to follow-up), and the remaining 67 patients with a total of 67 implants had a complete follow-up record. The success rate of implant was 97.01%(65/67) during one-year follow-up, and the initial success rate was 100% at an interval of three months. Compared with indexes at T0, mSBI and mPLI were significantly reduced at T1, T2 and T3 (P<0.05). There was no significant difference in PD level at T0, T1, T2 and T3(P>0.05), and the effective depth averaged 1.75 mm. Compared with indexes at T0, MBLs and MBMLs were significantly increased at T1(P<0.05). A total of 4 cases had implant reconstruction at T1 due to concerns about framework fracture, veneering fracture and aesthetics. At T2 and T3, there was no implant problems and loosening of restoration. There were 2 cases of peri-implant inflammation, one case of implant loss and one case of abutment pain, which were all improved after corresponding treatments. Two cases of porcelain fracture occurred in 67 zirconia restorations (2.63%), and the implant survival rate was 100%. CONCLUSIONS: Full-zirconia single-tooth molar implant-supported restorations with angulated screw channel abutments can effectively improve the implant stability in early phase, with high success rate, good short-term effect and few complications.


Assuntos
Dente Suporte , Implantes Dentários para Um Único Dente , Parafusos Ósseos , Coroas , Prótese Dentária Fixada por Implante , Falha de Restauração Dentária , Estética Dentária , Humanos , Dente Molar , Estudos Prospectivos , Zircônio
12.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578557

RESUMO

Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene sheets (GSs), have been adopted as resonators in vibration-based nanomechanical sensors because of their extremely high stiffness and small size. Diamond nanothreads (DNTs) are a new class of one-dimensional carbon nanomaterials with extraordinary physical and chemical properties. Their structures are similar to that of diamond in that they possess sp3-bonds formed by a covalent interaction between multiple benzene molecules. In this study, we focus on investigating the mechanical properties and vibration behaviors of DNTs with and without lattice defects and examine the influence of density and configuration of lattice defects on the two them in detail, using the molecular dynamics method and a continuum mechanics approach. We find that Young's modulus and the natural frequency can be controlled by alternating the density of the lattice defects. Furthermore, we investigate and explore the use of DNTs as resonators in nanosensors. It is shown that applying an additional extremely small mass or strain to all types of DNTs significantly changes their resonance frequencies. The results show that, similar to CNTs and GSs, DNTs have potential application as resonators in nano-mass and nano-strain sensors. In particular, the vibration behaviors of DNT resonators can be controlled by alternating the density of the lattice defects to achieve the best sensitivities.

13.
Clin Transl Med ; 11(9): e538, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34586744

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34523817

RESUMO

BACKGROUND: Skeletal muscle as a metabolic consumer determines systemic energy homeostasis by regulating myofibre type conversion and muscle mass control. Perturbation of the skeletal muscle metabolism elevates the risk of a variety of diseases including metabolic disorders. However, the regulatory pathways and molecules are not completely understood. The discovery of relevant responsible molecules and the associated network could be an attractive strategy to overcome diseases associated with muscle problems. METHODS: An initial screening using quantitative trait locus analysis enabled us to extract a set of genes including ubiquitin-specific proteases21 (USP21) (r = 0.738; P = 0.004) as potential targets associated with fasting blood glucose content. Given tight regulation of the ubiquitination status of proteins in muscle, we focused on USP21 and generated whole-body (KO) and skeletal muscle-specific USP21 knockout (MKO) mice. Transcriptomics, proteomics, and lipidomics assays in combination with various in vivo and in vitro experiments were performed to understand the functions of USP21 and underlying mechanisms. A high-fat diet (60%)-fed mouse model and diabetic patient-derived samples were utilized to assess the effects of USP21 on energy metabolism in skeletal muscle. RESULTS: USP21 was highly expressed in both human and mouse skeletal muscle, and controlled skeletal muscle oxidative capacity and fuel consumption. USP21-KO or USP21-MKO significantly promoted oxidative fibre type changes (Δ36.6% or Δ47.2%), muscle mass increase (Δ13.8% to Δ22.8%), and energy expenditure through mitochondrial biogenesis, fatty acid oxidation, and UCP2/3 induction (P < 0.05 or P < 0.01). Consistently, cold exposure repressed USP21 expression in mouse skeletal muscle (Δ55.3%), whereas loss of USP21 increased thermogenesis (+1.37°C or +0.84°C; P < 0.01). Mechanistically, USP21 deubiquitinated DNA-PKcs and ACLY, which led to AMPK inhibition. Consequently, USP21 ablation diminished diet-induced obesity (WT vs. USP21-KO, Δ8.02 g, 17.1%, P < 0.01; litter vs. USP21-MKO, Δ3.48 g, 7.7%, P < 0.05) and insulin resistance. These findings were corroborated in a skeletal muscle-specific gene KO mouse model. USP21 was induced in skeletal muscle of a diabetic patient (1.94-fold), which was reciprocally changed to p-AMPK (0.30-fold). CONCLUSIONS: The outcomes of this research provide novel information as to how USP21 in skeletal muscle contributes to systemic energy homeostasis, demonstrating USP21 as a key molecule in the regulation of myofibre type switch, muscle mass control, mitochondrial function, and heat generation and, thus, implicating the potential of this molecule and its downstream substrates network as targets for the treatment and/or prevention of muscle dysfunction and the associated metabolic diseases.

15.
Thorac Cancer ; 12(22): 2990-2995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34532966

RESUMO

BACKGROUND: Few clinical research studies with long-term follow-up have revealed whether cardiopulmonary bypass (CPB) increases the risk of postoperative distant metastasis in patients with giant refractory thoracic tumors. The present study evaluated the risk of distant metastasis after surgery utilizing CPB with long-term follow-up. METHODS: Clinical data for patients with giant refractory thoracic tumors who underwent resection with the use of CPB in the Second Affiliated Hospital of Soochow University during the past 11 years were retrospectively reviewed. RESULTS: Of the 14 patients with giant refractory thoracic tumors who had undergone surgery under CPB, 10 patients (71.4%) were completely resected. Twelve patients were followed up for 13-127 months with 10 patients were completely resected and two patients could not be completely resected due to severe tissue invasion. Three patients (25%) suffered from distant metastasis, and four patients (33.3%) experienced local recurrence. Only one patient (1/10) with complete resection suffered from distant metastasis, while two patients (2/10) experienced local recurrence. Two patients (2/2) with major resection suffered from both distant metastasis and local recurrence. Median overall survival for patients who have been regularly followed up was 50 months with 1-, 5-, and 10-year survival of 100%, 75%, and 66.7%. No difference was found between the distant metastasis survival and the local recurrence survival. (p = 0.99). CONCLUSIONS: CPB is an effective strategy for complete resection of the giant refractory thoracic tumors with an acceptable risk of postoperative distant metastasis for some patients.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34495855

RESUMO

The exploration of single cell RNA-sequencing (scRNA-seq) technology generates a new perspective to analyze biological problems. One of the major applications of scRNA-seq data is to discover subtypes of cells by cell clustering. Nevertheless, it is challengeable for traditional methods to handle scRNA-seq data with high level of technical noise and notorious dropouts. To better analyze single cell data, a novel scRNA-seq data analysis model called Maximum correntropy criterion based Non-negative and Low Rank Representation (MccNLRR) is introduced. Specifically, the maximum correntropy criterion, as an effective loss function, is more robust to the high noise and large outliers existed in the data. Moreover, the low rank representation is proven to be a powerful tool for capturing the global and local structures of data. Therefore, some important information, such as the similarity of cells in the subspace, is also extracted by it. Then, an iterative algorithm on the basis of the half-quadratic optimization and alternating direction method is developed to settle the complex optimization problem. Before the experiment, we also analyze the convergence and robustness of MccNLRR. At last, the results of cell clustering, visualization analysis, and gene markers selection on scRNA-seq data reveal that MccNLRR method can distinguish cell subtypes accurately and robustly.

17.
J Immunol ; 207(9): 2265-2277, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580107

RESUMO

Down syndrome cell adhesion molecule (Dscam) generates tens of thousands of isoforms by alternative splicing, thereby providing crucial functions during immune responses. In this study, a novel Dscam signaling pathway was investigated in crab, which remains poorly characterized in invertebrates. Bacterial infection induced the cytoplasmic cleavage of Dscam intracellular domains (ICDs) by γ-secretase, and then the released ICDs carrying specific alternatively spliced exons could directly interact with IPO5 to facilitate nuclear translocation. Nuclear imported ICDs thus promoted hemocyte proliferation and protect the host from bacterial infection. Protein-interaction studies revealed that the ectodomain of Dscam bound to a disintegrin and metalloprotease domain 10 (ADAM10) rather than ADAM17. Inhibition or overexpression of ADAM10 impaired or accelerated Dscam shedding activity post-bacterial stimulation, respectively. Moreover, the shedding signal then mediated Dscam with an intact cytoplasmic domain to promote the cleavage of ICDs by γ-secretase. Furthermore, the transcription of ADAM10 was regulated by Dscam-induced canonical signaling, but not nuclear imported ICDs, to serve as a feedback regulation between two different Dscam pathways. Thus, membrane-to-nuclear signaling of Dscam regulated hemocyte proliferation in response to bacterial infection.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/imunologia , Moléculas de Adesão Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Hemócitos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Células Cultivadas , Imunidade Inata , Carioferinas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Transdução de Sinais
18.
J Org Chem ; 86(21): 15544-15557, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34570502

RESUMO

A facile and versatile method for generating radicals from Csp3-H bonds under metal-free and organic-peroxide-free conditions was developed. By combining safe persulfate and low-toxic quaternary ammonium salt, a wide variety of Csp3-H compounds including ethers, (hetero)aromatic/aliphatic ketones, alkylbenzenes, alkylheterocycles, cycloalkanes, and haloalkanes were selectively activated to generate the corresponding C-centered radicals, which could be further captured by N-arylacrylamides to deliver the valuable functionalized oxindoles. Good functional group tolerance was demonstrated. The useful polycarbonyl compound and esters were also modified with the strategy. Moreover, the combination can also be applied to the practical coupling between simple haloalkanes and N-hydroxyphthalimide (NHPI).

19.
Front Genet ; 12: 678642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367241

RESUMO

Pancreatic cancer (PC) is a highly fatal disease, yet its causes remain unclear. Comprehensive analysis of different types of PC genetic data plays a crucial role in understanding its pathogenic mechanisms. Currently, non-negative matrix factorization (NMF)-based methods are widely used for genetic data analysis. Nevertheless, it is a challenge for them to integrate and decompose different types of genetic data simultaneously. In this paper, a non-NMF network analysis method, NMFNA, is proposed, which introduces a graph-regularized constraint to the NMF, for identifying modules and characteristic genes from two-type PC data of methylation (ME) and copy number variation (CNV). Firstly, three PC networks, i.e., ME network, CNV network, and ME-CNV network, are constructed using the Pearson correlation coefficient (PCC). Then, modules are detected from these three PC networks effectively due to the introduced graph-regularized constraint, which is the highlight of the NMFNA. Finally, both gene ontology (GO) and pathway enrichment analyses are performed, and characteristic genes are detected by the multimeasure score, to deeply understand biological functions of PC core modules. Experimental results demonstrated that the NMFNA facilitates the integration and decomposition of two types of PC data simultaneously and can further serve as an alternative method for detecting modules and characteristic genes from multiple genetic data of complex diseases.

20.
IEEE Trans Image Process ; 30: 7143-7155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370664

RESUMO

Facial action units (AUs) analysis plays an important role in facial expression recognition (FER). Existing deep spectral convolutional networks (DSCNs) have made encouraging performance for FER based on a set of facial local regions and a predefined graph structure. However, these regions do not have close relationships to AUs, and DSCNs cannot model the dynamic spatial dependencies of these regions for estimating different facial expressions. To tackle these issues, we propose a novel double dynamic relationships graph convolutional network (DDRGCN) to learn the strength of the edges in the facial graph by a trainable weighted adjacency matrix. We construct facial graph data by 20 regions of interest (ROIs) guided by different facial AUs. Furthermore, we devise an efficient graph convolutional network in which the inherent dependencies of vertices in the facial graph can be learned automatically during network training. Notably, the proposed model only has 110K parameters and 0.48MB model size, which is significantly less than most existing methods. Experiments on four widely-used FER datasets demonstrate that the proposed dynamic relationships graph network achieves superior results compared to existing light-weight networks, not just in terms of accuracy but also model size and speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...