Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-31922711


In this work, a new type of hybrid energy storage device is constructed by combining the zinc-ion supercapacitor and zinc-air battery in mild electrolyte. Reduced graphene oxide with rich defects, large surface area, and abundant oxygen-containing functional groups is used as active material, which exhibits two kinds of charge storage mechanisms of capacitor and battery simultaneously. Apart from the physical adsorption/desorption of anions on the surface of graphene, the zinc ions in electrolyte will be electrochemically adsorbed/desorbed onto the oxygen-containing groups of graphene during the charge/discharge process, contributing extra capacitance to the device. Moreover, the defects in graphene will further improve the electrochemical performance of the energy storage device via catalyzing the oxygen reduction reaction with exposure to air. Consequently, the synergistic effect leads to a record high capacitance of 370.8 F g-1 at a current density of 0.1 A g-1, which is higher than that of zinc-ion supercapacitors reported previously. Furthermore, the hybrid device exhibits a superior cycling stability with 94.5% capacitance retention even after 10000 charge/discharge cycles at a high current density of 5 A g-1. Interestingly, the developed hybrid device can be self-charging automatically after the power is exhausted in the ambient atmosphere. Other electrode materials, such as carbon nanotube paper, are also used to build a hybrid device to verify the feasibility of this strategy. This facile, green, and convenient strategy provides new insight for developing a high performance storage device, showing great application prospect in other hybrid energy storage devices in mild electrolyte.

Adv Mater ; 32(6): e1907005, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31850657


Microsized supercapacitors (mSCs) with small volume, rapid charge-discharge rate, and ultralong cyclic lifetime are urgently needed to meet the demand of miniaturized portable electronic devices. A versatile self-shrinkage assembling (SSA) strategy to directly construct the compact mSCs (CmSCs) from hydrogels of reduced graphene oxide is reported. A single CmSC is only 0.0023 cm3 in volume, which is significantly smaller than most reported mSCs in fiber/yarn and planar interdigital forms. It exhibits a high capacitance of up to 68.3 F cm-3 and a superior cycling stability with 98% capacitance retention after 25 000 cycles. Most importantly, the SSA technique enables the CmSC as the building block to realize arbitrary, programmable, and multi-dimensional integration for adaptable and complicated power systems. By design on mortise and tenon joint connection, autologous integrated 3D interdigital CmSCs are fabricated in a self-holding-on manner, which thus dramatically reduces the whole device volume to achieve the high-performance capacitive behavior. Consequently, the SSA technique offers a universal and versatile approach for large-scale on-demand integration of mSCs as flexible and transformable power sources.

Aging (Albany NY) ; 11(5): 1580-1588, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867337


INTRODUCTION: Although the proportion and duration of rapid eye movement (REM) sleep are correlated with neurological and cardiovascular diseases, whether REM sleep is associated with all-cause mortality in community-based populations remains unknown. METHODS: A prospective study was performed within the Sleep Heart Health Study (SHHS, Registration NO. NCT00005275). Total sleep time, sleep efficiency, and REM sleep were measured using polysomnography. Cox proportional hazards regression models were used to estimate the association of the REM sleep with all-cause mortality. RESULTS: Over a mean follow-up period of 11.0 ± 3.1 y, 1234 individuals (21.9%) died. In the entire population, reduced REM sleep was significantly associated with increasing all-cause mortality. After adjustment for age, sex, race, body mass index, smoking status, total cholesterol, triglycerides, high-density lipoprotein, history of diabetes and hypertension, and the apnea-hypopnea index, the duration and proportion of REM sleep were found to be significantly associated with all-cause mortality when the lowest and the highest REM quartile groups were compared (hazard ratio, 95% confidence interval: 1.727, 1.434-2.079; 1.545, 1.298-1.839; respectively). CONCLUSION: The proportion and duration of REM sleep are negatively associated with all-cause mortality. This finding emphasizes the importance of personalized sleep management in community-based populations.

ACS Nano ; 12(11): 11407-11416, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30383351


The inherently formed liquid crystals (LCs) of graphene oxide (GO) in aqueous dispersions severely restrict the fabrication of large-size and structure-intact graphene aerogel bulk by an industry-applicable method. Herein, by developing a surfactant-foaming sol-gel method to effectively disrupt and reconstruct the inherent GO LCs via microbubbles as templates, we achieve the large-size and structure-intact graphene hydrogel bulk (GHB). After simple freezing and air-drying, the resulting graphene aerogel bulk (GAB) with a structure-intact size of about 1 m2 exhibits a superelasticity of up to 99% compressive strain, ultralow density of 2.8 mg cm-3, and quick solar-thermal conversion ability. The modified GAB (GABTP) shows a high decomposition temperature ( Tmax) of 735 °C in air and a low heat storage capacity. These excellent performances make the GABs suitable for many practical applications, as proven in this work, including as high compressive force absorbers, high absorption materials for oils or dangerous solvents, superior solar-thermal management materials for rapid heater or controlled shelter, and high-efficiency fire-resistant and thermal insulation materials. The whole preparation process is easily scalable and cost-effective for mass production of structure-intact multifunctional graphene aerogel bulk toward practical applications.