Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Filtros adicionais











Intervalo de ano
1.
J Plant Physiol ; 234-235: 117-132, 2019 Mar - Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784850

RESUMO

The GASA (GA-stimulated Arabidopsis) gene family is highly specific to plants, signifying a crucial role in plant growth and development. Herein, we retrieved 119 GASA genes in 10 different plant species in two major lineages (monocots and eudicots). Further, in the phylogenetic tree we classified these genes into four well-conserved subgroups. All the proteins contain a conserved GASA domain with similar characteristics and a highly specific 12-cysteine residue of the C-terminus position. According to the global microarray data and qRT-PCR based analysis, the OsGASA gene family was dominantly expressed in the seedling and transition phase of floral stages. Despite this, OsGASA genes profoundly contribute to rice grain size and length, whereas the highest abundance of transcript level was noticed in stage-2 (Inf 6, 3.0-cm-long spikelet) and stage-3 (Inf 7, 5.0-cm-long spikelet) under GA treatment during panicle formation. Additionally, the maximum expression level of these genes was recorded in response to GA and ABA in young seedlings. Further, in response to abiotic stresses, OsGASA1/8/10 was up- regulated by salt, OsGASA2/5/7 by drought, OsGASA3/6 by cold, and OsGASA4/9 by heat stress. With the exception of OsGASA4, the higher transcription levels of all the other GASA genes were induced by Cd and Cr metal stresses (8-10 fold changes) at various time points. Finally, the GO ontology analysis of GASAs revealed the biological involvement in the GA-mediated signaling pathway and abiotic stresses. Prominently, most of these proteins are localized in cellular components such as the cell wall and extracellular region, where the molecular functions such as ATP binding and protein binding were observed. These results imply that GASAs are significantly involved in rice panicle developmental stages, responses to external stimuli, and hormones.


Assuntos
Giberelinas/metabolismo , Família Multigênica , Oryza/genética , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis , Cromossomos de Plantas , Simulação por Computador , Expressão Gênica , Metais Pesados , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Regiões Promotoras Genéticas , Estresse Fisiológico
2.
BMC Genomics ; 20(1): 27, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626335

RESUMO

BACKGROUND: B-box (BBX) proteins play important roles in plant growth regulation and development including photomorphogenesis, photoperiodic regulation of flowering, and responses to biotic and abiotic stresses. RESULTS: In the present study we retrieved total 131 BBX members from five Poaceae species including 36 from maize, 30 from rice, 24 from sorghum, 22 from stiff brome, and 19 from Millet. All the BBX genes were grouped into five subfamilies on the basis of their phylogenetic relationships and structural features. The expression profiles of 12 OsBBX genes in different tissues were evaluated through qRT-PCR, and we found that most rice BBX members showed high expression level in the heading stage compared to seedling and booting stages. The expression of OsBBX1, OsBBX2, OsBBX8, OsBBX19, and OsBBX24 was strongly induced by abiotic stresses such as drought, cold and salt stresses. Furthermore, the expression of OsBBX2, OsBBX7, OsBBX17, OsBBX19, and OsBBX24 genes was up-regulated under GA, SA and MeJA hormones at different time points. Similarly, the transcripts level of OsBBX1, OsBBX7, OsBBX8, OsBBX17, and OsBBX19 genes were significantly affected by heavy metals such as Fe, Ni, Cr and Cd. CONCLUSION: Change in the expression pattern of BBX members in response to abiotic, hormone and heavy metal stresses signifies their potential roles in plant growth and development and in response to multivariate stresses. The findings suggest that BBX genes could be used as potential genetic markers for the plants, particularly in functional analysis and determining their roles under multivariate stresses.


Assuntos
Proteínas de Transporte/genética , Evolução Molecular , Poaceae/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Metais/toxicidade , Família Multigênica/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética
3.
Molecules ; 23(5)2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757203

RESUMO

The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.


Assuntos
Biologia Computacional , FMN Redutase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metais , Família Multigênica , Reguladores de Crescimento de Planta/farmacologia , Estresse Fisiológico , Transcriptoma , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Duplicação Gênica , Metais/farmacologia , Anotação de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Filogenia , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 17(6)2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27240354

RESUMO

NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed.


Assuntos
NADH NADPH Oxirredutases/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
5.
Ecotoxicol Environ Saf ; 78: 281-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22154778

RESUMO

Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Enxofre/toxicidade , Vicia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vicia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA