Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7169, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887396

RESUMO

Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.

2.
Rev Sci Instrum ; 92(10): 103705, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717388

RESUMO

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few Å. Often, the tunneling current between the tip and the sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here, we discuss another approach using a computer and data acquisition through the universal serial bus port. We find that it allows successful ultralow noise studies of surfaces at cryogenic temperatures. We show results on different compounds including a type II Weyl semimetal (WTe2), a quasi-two-dimensional dichalcogenide superconductor (2H-NbSe2), a magnetic Weyl semimetal (Co3Sn2S2), and an iron pnictide superconductor (FeSe).

3.
Nat Commun ; 12(1): 1855, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767195

RESUMO

Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P[Formula: see text], which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy (EF). Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.

4.
Proc Natl Acad Sci U S A ; 116(51): 25524-25529, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792191

RESUMO

Strain describes the deformation of a material as a result of applied stress. It has been widely employed to probe transport properties of materials, ranging from semiconductors to correlated materials. In order to understand, and eventually control, transport behavior under strain, it is important to quantify the effects of strain on the electronic bandstructure, carrier density, and mobility. Here, we demonstrate that much information can be obtained by exploring magnetoelastoresistance (MER), which refers to magnetic field-driven changes of the elastoresistance. We use this powerful approach to study the combined effect of strain and magnetic fields on the semimetallic transition metal dichalcogenide [Formula: see text] We discover that WTe2 shows a large and temperature-nonmonotonic elastoresistance, driven by uniaxial stress, that can be tuned by magnetic field. Using first-principle and analytical low-energy model calculations, we provide a semiquantitative understanding of our experimental observations. We show that in [Formula: see text], the strain-induced change of the carrier density dominates the observed elastoresistance. In addition, the change of the mobilities can be directly accessed by using MER. Our analysis also reveals the importance of a heavy-hole band near the Fermi level on the elastoresistance at intermediate temperatures. Systematic understanding of strain effects in single crystals of correlated materials is important for future applications, such as strain tuning of bulk phases and fabrication of devices controlled by strain.

5.
Rev Sci Instrum ; 90(9): 093105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575220

RESUMO

We have designed, constructed, and tested a unique cold finger suitable for angle resolved photoemission spectroscopy. This design is based on in situ helium reliquification and utilizes pulse tube cryocooler. The pulse tube can be removed for baking without breaking Ultra High Vacuum (UHV). This design also allows the use of non-UHV heater that can be replaced without the need to vent the system. The cold finger has minimal vibration, operates over a temperature range of 1.7 K-400 K, and has no measurable residual magnetization. In continuous mode, it can maintain a sample temperature of 2.6 K, while in single shot mode (by pumping on liquid helium), it can reach temperatures down to 1.8 K for a period of several hours.

6.
Chem Commun (Camb) ; 54(92): 12946-12949, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30379152

RESUMO

Large crystals of Yb14MgSb11 were grown through a Sn flux method. Magnetic susceptibility measurements yield an effective magnetic moment of 3.4(1) µB, revealing the presence of both divalent and trivalent Yb in Yb14MgSb11. Previously assumed to only contain Yb2+ as in Yb14MnSb11, the mixed valency demonstrates that Yb14MgSb11 is a Zintl phase.

7.
Phys Rev Lett ; 115(16): 166602, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550889

RESUMO

We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based, angle-resolved photoemission spectroscopy (ARPES), temperature- and field-dependent resistivity, and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compound that manifests exceptionally large, temperature-dependent magnetoresistance. The Fermi surface consists of two pairs of electron and two pairs of hole pockets along the X-Γ-X direction. Using detailed ARPES temperature scans, we find a rare example of a temperature-induced Lifshitz transition at T≃160 K, associated with the complete disappearance of the hole pockets. Our electronic structure calculations show a clear and substantial shift of the chemical potential µ(T) due to the semimetal nature of this material driven by modest changes in temperature. This change of Fermi surface topology is also corroborated by the temperature dependence of the TEP that shows a change of slope at T≈175 K and a breakdown of Kohler's rule in the 70-140 K range. Our results and the mechanisms driving the Lifshitz transition and transport anomalies are relevant to other systems, such as pnictides, 3D Dirac semimetals, and Weyl semimetals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...