Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
J Nanosci Nanotechnol ; 20(4): 2488-2494, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492266

RESUMO

Herein, we report the effect of synthesis temperature on the morphologies, optical and electronic properties of magnesium oxide (MgO) nanostructures. The MgO nanostructures were synthesized at different temperatures, i.e., 100 °C, 300 °C, and 600 °C by simple chemical reaction process and their morphology, particle size, optical, and electrical properties were examined by different techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy. The morphological investigations revealed that various morphologies of MgO nanostructures, i.e., nanoparticles, nanosheet networks, and nanoneedles were synthesized at 100 °C, 300 °C, and 600 °C. The XRD results confirmed that with increasing the synthesis temperature, the crystallinity of the synthesized nanostructures increases. Further, the dielectric properties and AC conductivity at various frequencies for MgO nanostructures were studied which revealed that the dielectric losses decrease with increase in frequency and temperature. In addition, the observed band gap decreases from 4.89 eV to 4.438 eV (100 °C to 600 °C) representing its increase in the conductivity.

2.
J Nanosci Nanotechnol ; 20(2): 741-751, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383069

RESUMO

The vanadium (V) and nitrogen (N) dopants on TiO2 demonstrated superior photocatalytic performance for the degradation of methylene blue (MB) dye under visible light. The vanadium, V, N-co-doped TiO2 was synthesized by a modified sol-gel method. It revealed that V and N codoping had a significant effect on the band gap (Eg) of TiO2, where the pristine TiO2 possessed a wide band gap (3.18 eV) compared to V-doped TiO2 (2.89 eV) and N-doped TiO2 (2.87 eV) while the V, N-co-doped TiO2 depicted the narrowest band gap (2.65 eV). The greatly increased specific surface area for the V, N-co-doped TiO2 (103.87 m²/g) as compared to P25 TiO2 (51.68 m²/g) also contributed to the major improvement in the MB dye degradation efficiency (0.055 min-1). The V, N-co-doped TiO2 exhibit rapid photocatalytic activity for the degradation of MB with almost 99% of degradation in 120 minutes.

3.
J Nanosci Nanotechnol ; 20(2): 918-923, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383087

RESUMO

Herein, we report the facile synthesis of Iron oxide@Pt core-shell nanoparticles (NPs) by facile two step synthesis process. The first step follows the growth of iron oxide nanoparticle by thermal decomposition process while the second step deals with the formation of iron oxide@Pt core-shell nanoparticles by the chemical reduction method. The synthesized core-shell nanoparticles were characterized by several techniques and used for the catalytic reductive translation of Cr(VI) to Cr(III) in the presence of formic acid by a UV-vis spectrophotometer. The UV photo-spectrometer analysis confirmed the conversion efficiency from 12% to as high as 98.8% at the end of 30 minutes. Thus, the presence of Iron oxide @Pt core-shell nanoparticles (NPs) can be effectively used as a catalyst for the reducion of Cr(VI) to Cr(III) ions. Additionally, antibacterial studies were performed for the prepared core-shell nanoparticles against two bacterial strains, i.e., gram (+ve) Staphylococcus Aureus (S. Aureus) and gram (-ve) Escherichia Coli (E. Coli).

4.
J Agric Food Chem ; 67(29): 8268-8278, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31283221

RESUMO

Species authentication of meat and fish products is crucial to safeguard public health, economic investment, and religious sanctity. We developed a heptaplex polymerase chain reaction assay targeting short amplicon length (73-198 bp) for the simultaneous detection and differentiation of cow, buffalo, chicken, cat, dog, pig, and fish species in raw and processed food using species-specific primers targeting mitochondrial cytb, ND5, and 16s rRNA genes. Assay validation of adulterated and various heat-treated meatball matrices showed excellent stability and sensitivity under all processing conditions. The detection limit was 0.01-0.001 ng of DNA under pure states and 0.5% meat in meatball products. Buffalo was detected in 86.7% (13 out of 15) of tested commercial beef products, while chicken, pork, and fish products were found to be pure. The developed assay was efficient enough to detect target species simultaneously, even in highly degraded and processed food products at reduced time.


Assuntos
Contaminação de Alimentos/análise , Produtos da Carne/análise , Reação em Cadeia da Polimerase/métodos , Animais , Búfalos/genética , Gatos/genética , Bovinos/genética , Galinhas/genética , Cães/genética , Peixes/genética , Suínos/genética
5.
J Nanosci Nanotechnol ; 19(11): 7139-7148, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039868

RESUMO

In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO2). As synthesized SnO2 nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO2. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO2 lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO2 NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO2 nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO2 nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30945985

RESUMO

Consumption and exploitation of crocodiles have been rampant for their exotic, nutritive and medicinal attributes. These depredations are alarming and although they have continued to be monitored by wildlife and conservation agencies, unlawful trading of crocodiles shows an increasing trend worldwide. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays for crocodile have been documented but they are only suitable for identification and cannot quantify adulterations. We described here a quantitative duplex real-time PCR assay with probes to quantify contributions from Crocodylus porosus materials simultaneously. A very short amplicon size of 127bp was used because longer targets could have been broken down in samples, bringing considerable uncertainty in molecular analysis. We have validated a TaqMan probe-based duplex real-time PCR (qPCR) assay for the detection of 0.004 ng DNA in pure state and 0.1% target meat in model chicken meatball. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 12 model chicken meatballs adulterated with C. porosus reflected 96.3-120.2% target recovery at 0.1-10% adulterations. A validation test of 21 commercial food and traditional medicine (TM) crocodile-based products showed 100% effectiveness. Short amplicon sizes, alternative complementary target, exceptional stability and superior sensitivity suggested the assay could be used for the identification and quantitative determination of C. porosus in any food or TM samples even under degraded conditions.


Assuntos
Jacarés e Crocodilos/genética , Sondas de DNA/genética , Contaminação de Alimentos/análise , Abastecimento de Alimentos , Medicina Tradicional , Reação em Cadeia da Polimerase em Tempo Real , Animais
7.
Artigo em Inglês | MEDLINE | ID: mdl-30865559

RESUMO

Mislabelling in fish products is a highly significant emerging issue in world fish trade in terms of health and economic concerns. DNA barcoding is an efficient sequencing-based tool for detecting fish species substitution but due to DNA degradation, it is in many cases difficult to amplify PCR products of the full-length barcode marker (~650 bp), especially in severely processed products. In the present study, a pair of universal primers targeting a 198 bp sequence of the mitochondrial 16s rRNA gene was designed for identification of fish species in the processed fish products commonly consumed in Malaysia. The specificity of the universal primers was tested by both in-silico studies using bioinformatics software and through cross-reaction assessment by practical PCR experiments against the DNA from 38 fish species and 22 other non-target species (animals and plants) and found to be specific for all the tested fish species. To eliminate the possibility of any false-negative detection, eukaryotic endogenous control was used during specificity evaluation. The developed primer set was validated with various heat-treated (boiled, autoclaved and microwaved) fish samples and was found to show high stability under all processing conditions. The newly developed marker successfully identified 92% of the tested commercial fish products with 96-100% sequence similarities. This study reveals a considerable degree of species mislabelling (20.8%); 5 out of 24 fish products were found to be mislabelled. The new marker developed in this work is a reliable tool to identify fish species even in highly processed products and might be useful in detecting fish species substitution thus protecting consumers' health and economic interests.


Assuntos
Código de Barras de DNA Taxonômico , Produtos Pesqueiros/análise , Peixes/classificação , Peixes/genética , Mitocôndrias/genética , RNA Ribossômico 16S/genética , Animais , Biomarcadores/análise , Malásia
8.
Biosens Bioelectron ; 131: 214-223, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844598

RESUMO

Surface-enhanced Raman scattering (SERS) based DNA biosensors have considered as excellent, fast and ultrasensitive sensing technique which relies on the fingerprinting ability to produce molecule specific distinct spectra. Unlike conventional fluorescence based strategies SERS provides narrow spectral bandwidths, fluorescence quenching and multiplexing ability, and fitting attribute with short length probe DNA sequences. Herein, we report a novel and PCR free SERS based DNA detection strategy involving dual platforms and short DNA probes for the detection of endangered species, Malayan box turtle (MBT) (Cuora amboinensis). In this biosensing feature, the detection is based on the covalent linking of the two platforms involving graphene oxide-gold nanoparticles (GO-AuNPs) functionalized with capture probe 1 and gold nanoparticles (AuNPs) modified with capture probe 2 and Raman dye (Cy3) via hybridization with the corresponding target sequences. Coupling of the two platforms generates locally enhanced electromagnetic field 'hot spot', formed at the junctions and interstitial crevices of the nanostructures and consequently provide significant amplification of the SERS signal. Therefore, employing the two SERS active substrates and short-length probe DNA sequences, we have managed to improve the sensitivity of the biosensors to achieve a lowest limit of detection (LOD) as low as 10 fM. Furthermore, the fabricated biosensor exhibited sensitivity even for single nucleotide base-mismatch in the target DNA as well as showed excellent performance to discriminate closely related six non-target DNA sequences. Although the developed SERS biosensor would be an attractive platform for the authentication of MBT from diverse samples including forensic and/or archaeological specimens, it could have universal application for detecting gene specific biomarkers for many diseases including cancer.


Assuntos
Técnicas Biossensoriais , DNA/isolamento & purificação , Grafite/química , Nanopartículas Metálicas/química , DNA/química , Sondas de DNA/química , Ouro/química , Limite de Detecção , Nanoestruturas/química , Análise Espectral Raman
9.
Materials (Basel) ; 11(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360462

RESUMO

There are various approaches to enhancing the catalytic properties of TiO2, including modifying its morphology by altering the surface reactivity and surface area of the catalyst. In this study, the primary aim is to enhance the photocatalytic activity by changing the TiO2 nanotubes' architecture. The highly ordered infrastructure is favorable for a better charge carrier transfer. It is well known that anodization affects TiO2 nanotubes' structure by increasing the anodization duration which in turn influence the photocatalytic activity. The characterizations were conducted by FE-SEM (fiend emission scanning electron microscopy), XRD (X-ray diffraction), RAMAN (Raman spectroscopy), EDX (Energy dispersive X-ray spectroscopy), UV-Vis (Ultraviolet visible spectroscopy) and LCMS/MS/MS (liquid chromatography mass spectroscopy). We found that the morphological structure is affected by the anodization duration according to FE-SEM. The photocatalytic degradation shows a photodegradation rate of k = 0.0104 min-1. It is also found that a mineralization of Simazine by our prepared TiO2 nanotubes leads to the formation of cyanuric acid. We propose three Simazine photodegradation pathways with several intermediates identified.

10.
PLoS One ; 13(10): e0202694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273344

RESUMO

A cost-effective, facile hydrothermal approach was made for the synthesis of SnO2/graphene (Gr) nano-composites. XRD diffraction spectra clearly confirmed the presence of tetragonal crystal system of SnO2 which was maintaining its structure in both pure and composite materials' matrix. The stretching and bending vibrations of the functional groups were analyzed using FTIR analysis. FESEM images illustrated the surface morphology and the texture of the synthesized sample. HRTEM images confirmed the deposition of SnO2 nanoparticles over the surface of graphene nano-sheets. Raman Spectroscopic analysis was carried out to confirm the in-plane blending of SnO2 and graphene inside the composite matrix. The photocatalytic performance of the synthesized sample under UV irradiation using methylene blue dye was observed. Incorporation of grapheme into the SnO2 sample had increased the photocatalytic activity compared with the pure SnO2 sample. The electrochemical property of the synthesized sample was evaluated.

11.
J Cell Biochem ; 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30368873

RESUMO

In the present research, we report a greener, faster, and low-cost synthesis of gold-coated iron oxide nanoparticles (Fe3 O4 /Au-NPs) by different ratios (1:1, 2:1, and 3:1 molar ratio) of iron oxide and gold with natural honey (0.5% w/v) under hydrothermal conditions for 20 minutes. Honey was used as the reducing and stabilizing agent, respectively. The nanoparticles were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), vibrating sample magnetometer (VSM), and fourier transformed infrared spectroscopy (FT-IR). The XRD analysis indicated the presence of Fe3 O4 /Au-NPs, while the TEM images showed the formation of Fe3 O4 /Au-NPs with diameter range between 3.49 nm and 4.11 nm. The VSM study demonstrated that the magnetic properties were decreased in the Fe3 O4 /Au-NPs compared with the Fe3 O4 -NPs. The cytotoxicity threshold of Fe3 O4 /Au-NPs in the WEHI164 cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was demonstrated no significant toxicity in higher concentration up to 140.0 ppm which can become the main candidates for biological and biomedical applications, such as drug delivery.

12.
Nanoscale Res Lett ; 13(1): 229, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076473

RESUMO

In this research, a facile co-precipitation method was used to synthesize pure and Mg-doped ZnO nanoparticles (NPs). The structure, morphology, chemical composition, and optical and antibacterial activity of the synthesized nanoparticles (NPs) were studied with respect to pure and Mg-doped ZnO concentrations (0-7.5 molar (M) %). X-ray diffraction pattern confirmed the presence of crystalline, hexagonal wurtzite phase of ZnO. Scanning electron microscope (SEM) images revealed that pure and Mg-doped ZnO NPs were in the nanoscale regime with hexagonal crystalline morphology around 30-110 nm. Optical characterization of the sample revealed that the band gap energy (Eg) decreased from 3.36 to 3.04 eV with an increase in Mg2+ doping concentration. Optical absorption spectrum of ZnO redshifted as the Mg concentration varied from 2.5 to 7.5 M. Photoluminescence (PL) spectra showed UV emission peak around 400 nm. Enhanced visible emission between 430 and 600 nm with Mg2+ doping indicated the defect density in ZnO by occupying Zn2+ vacancies with Mg2+ ions. Photocatalytic studies revealed that 7.5% Mg-doped ZnO NPs exhibited maximum degradation (78%) for Rhodamine B (RhB) dye under UV-Vis irradiation. Antibacterial studies were conducted using Gram-positive and Gram-negative bacteria. The results demonstrated that doping with Mg ions inside the ZnO matrix had enhanced the antibacterial activity against all types of bacteria and its performance was improved with successive increment in Mg ion concentration inside ZnO NPs.

13.
Anal Biochem ; 556: 136-144, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981317

RESUMO

Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.

14.
Anal Biochem ; 551: 29-36, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753720

RESUMO

In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 µmol L-1 with a detection limit of 0.01 µmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.

15.
ScientificWorldJournal ; 2014: 439839, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506069

RESUMO

Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)(100-y) - (ALPO4)(y) (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4.


Assuntos
Compostos de Alumínio/química , Fosfatos/química , Álcool de Polivinil/química , Temperatura Ambiente , Ligações de Hidrogênio , Fosforilação , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termogravimetria
16.
ScientificWorldJournal ; 2014: 184604, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25215315

RESUMO

Gold nanoparticles (AuNPs) had been synthesized with various molarities and weights of reducing agent, monosodium glutamate (MSG), and stabilizer chitosan, respectively. The significance of chitosan as stabilizer was distinguished through transmission electron microscopy (TEM) images and UV-Vis absorption spectra in which the interparticles distance increases whilst retaining the surface plasmon resonance (SPR) characteristics peak. The most stable AuNPs occurred for composition with the lowest (1 g) weight of chitosan. AuNPs capped with chitosan size stayed small after 1 month aging compared to bare AuNPs. The ability of chitosan capped AuNPs to uptake analyte was studied by employing amorphous carbon nanotubes (α-CNT), copper oxide (Cu2O), and zinc sulphate (ZnSO4) as the target material. The absorption spectra showed dramatic intensity increased and red shifted once the analyte was added to the chitosan capped AuNPs.


Assuntos
Quitosana/química , Ouro/química , Nanopartículas/química , Análise Espectral/métodos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nanotubos de Carbono/química , Ressonância de Plasmônio de Superfície
17.
ScientificWorldJournal ; 2014: 547076, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133244

RESUMO

New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.


Assuntos
Dibutilftalato/química , Nanopartículas/química , Polietilenoglicóis/química , Zircônio/química , Íons/química , Fenômenos Ópticos
18.
ScientificWorldJournal ; 2014: 847806, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995365

RESUMO

We report the synthesis of amorphous carbon nanotubes/silver (αCNTs/Ag) nanohybrids via simple chemical route without additional reactant and surfactant at low temperature. Field emission scanning microscope (FESEM) and transmission electron microscope (TEM) confirmed formation of CNTs. X-ray diffraction (XRD) pattern confirmed the amorphous phase of carbon and the formation of Ag nanoparticles crystalline phase. Raman spectra revealed the amorphous nature of α CNTs. UV-visible spectroscopy showed enhancement of optical properties of α CNTs/Ag nanohybrids.


Assuntos
Temperatura Baixa , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Difração de Raios X/métodos
19.
ScientificWorldJournal ; 2014: 589479, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963510

RESUMO

Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Ácido Nítrico/química , Termogravimetria , Difração de Raios X
20.
Nanoscale Res Lett ; 9(1): 42, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24450850

RESUMO

Ag/PMMA nanocomposites were successfully synthesized by in-situ technique. Transmission electron microscopy (TEM) images show that the particles are spherical in shape and their sizes are dependent on temperature. The smallest particle achieved high stability as indicated from Zeta sizer analysis. The red shift of surface plasmon resonance (SPR) indicated the increases of particle sizes. X-ray diffraction (XRD) patterns exhibit a two-phase (crystalline and amorphous) structure of Ag/PMMA nanocomposites. The complexation of Ag/PMMA nanocomposites was confirmed using Raman spectroscopy. Fourier transform infrared spectroscopy spectra confirmed that the bonding was dominantly influenced by the PMMA and DMF solution. Finally, thermogravimetric analysis (TGA) results indicate that the total weight loss increases as the temperature increases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA