Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893856

RESUMO

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Assuntos
Genoma , Carneiro Doméstico , Animais , Ásia , Europa (Continente) , Variação Genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Ovinos/genética , Carneiro Doméstico/genética
2.
Genes (Basel) ; 12(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802939

RESUMO

Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.


Assuntos
Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Carneiro Doméstico/classificação , Animais , Teorema de Bayes , Cruzamento , Efeito Fundador , Genótipo , Seleção Genética , Ovinos , Carneiro Doméstico/genética , Suécia
3.
PLoS One ; 16(3): e0248405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720948

RESUMO

Gastrointestinal nematodes (GIN) are an important constraint in small ruminant production. Genetic selection for resistant animals is a potential sustainable control strategy. Advances in molecular genetics have led to the identification of several molecular genetic markers associated with genes affecting economic relevant traits. In this study, the variants in the genome of Creole goats resistant or susceptible to GIN were discovered from RNA-sequencing. We identified SNPs, insertions and deletions that distinguish the two genotypes, resistant and susceptible and we characterized these variants through functional analysis. The T cell receptor signalling pathway was one of the top significant pathways that distinguish the resistant from the susceptible genotype with 78% of the genes involved in this pathway showing genomic variants. These genomic variants are expected to provide useful resources especially for molecular breeding for GIN resistance in goats.


Assuntos
Resistência à Doença/genética , Gastroenteropatias , Doenças das Cabras , Cabras , Infecções por Nematoides , Polimorfismo de Nucleotídeo Único , RNA-Seq , Animais , Feminino , Gastroenteropatias/genética , Gastroenteropatias/parasitologia , Gastroenteropatias/veterinária , Doenças das Cabras/genética , Doenças das Cabras/parasitologia , Cabras/genética , Cabras/parasitologia , Masculino , Infecções por Nematoides/genética , Infecções por Nematoides/veterinária
4.
Genet Sel Evol ; 52(1): 52, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887549

RESUMO

BACKGROUND: Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. RESULTS: Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). CONCLUSIONS: We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.


Assuntos
Aclimatação , Bovinos/genética , Locos de Características Quantitativas , Seleção Artificial , Altitude , Animais , Bovinos/fisiologia , Temperatura Baixa , Linhagem , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
5.
BMC Genet ; 21(1): 27, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143561

RESUMO

BACKGROUND: Native Swedish sheep breeds are part of the North European short-tailed sheep group; characterized in part by their genetic uniqueness. Our objective was to study the population structure of native Swedish sheep. Five breeds were genotyped using the 600 K SNP array. Dalapäls and Klövsjö sheep are from the middle of Sweden; Gotland and Gute sheep from Gotland, an island in the Baltic Sea; and Fjällnäs sheep from northern Sweden. We studied population structure by: principal component analysis (PCA), cluster-based analysis of admixture, and an estimated population tree. RESULTS: The analyses of the five Swedish breeds revealed that these breeds are five distinct breeds, while Gute and Gotland are more closely related to each other as seen in all analyses. All breeds had long branch lengths in the population tree indicating they've been subjected to drift. We repeated our analyses using 39 K SNP and including 50 K SNP genotypes from other European and southwestern Asian breeds from the Sheep HapMap project and 600 K SNP genotypes from a dataset of French sheep. Results arranged breeds into five groups: south-west Asia, south-west Europe, central Europe, north Europe and north European short-tailed sheep. Within this last group, Norwegian and Icelandic breeds, Finn and Romanov sheep, Scottish breeds, and Gute and Gotland sheep were more closely related while the remaining Swedish breeds and Ouessant sheep were distinct from all breeds and had longer branches in the population tree. CONCLUSIONS: We showed population structure of five Swedish breeds and their structure within European and southwestern Asian breeds. Swedish breeds are unique, distinct breeds that have been subjected to drift but group with other north European short-tailed sheep.


Assuntos
Genética Populacional , Filogenia , Vigilância da População , Ovinos/genética , Animais , Cruzamento , Variação Genética/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Carneiro Doméstico , Suécia/epidemiologia
6.
Vet Res ; 51(1): 44, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178732

RESUMO

Gastrointestinal nematode (GIN) infections are one of the major constraints for grazing sheep and goat production worldwide. Genetic selection for resistant animals is a promising control strategy. Whole-transcriptome analysis via RNA-sequencing (RNA-seq) provides knowledge of the mechanisms responsible for complex traits such as resistance to GIN infections. In this study, we used RNA-seq to monitor the dynamics of the response of the abomasal mucosa of Creole goat kids infected with Haemonchus contortus by comparing resistant and susceptible genotypes. A total of 8 cannulated kids, 4 susceptible and 4 resistant to GIN, were infected twice with 10 000 L3 H. contortus. During the second infection, abomasal mucosal biopsies were collected at 0, 8, 15 and 35 days post-infection (dpi) from all kids for RNA-seq analysis. The resistant animals showed early activation of biological processes related to the immune response. The top 20 canonical pathways of differentially expressed genes for different comparison showed activation of the immune response through many relevant pathways including the Th1 response. Interestingly, our results showed a simultaneous time series activation of Th2 related genes in resistant compared to susceptible kids.


Assuntos
Abomaso/parasitologia , Mucosa Gástrica/metabolismo , Doenças das Cabras/fisiopatologia , Hemoncose/veterinária , Haemonchus/fisiologia , Transcriptoma , Animais , Mucosa Gástrica/parasitologia , Cabras , Hemoncose/fisiopatologia
7.
Genet Sel Evol ; 51(1): 56, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578144

RESUMO

BACKGROUND: Native cattle breeds are important genetic resources given their adaptation to the local environment in which they are bred. However, the widespread use of commercial cattle breeds has resulted in a marked reduction in population size of several native cattle breeds worldwide. Therefore, conservation management of native cattle breeds requires urgent attention to avoid their extinction. To this end, we genotyped nine Swedish native cattle breeds with genome-wide 150 K single nucleotide polymorphisms (SNPs) to investigate the level of genetic diversity and relatedness between these breeds. RESULTS: We used various SNP-based approaches on this dataset to connect the demographic history with the genetic diversity and population structure of these Swedish cattle breeds. Our results suggest that the Väne and Ringamåla breeds originating from southern Sweden have experienced population isolation and have a low genetic diversity, whereas the Fjäll breed has a large founder population and a relatively high genetic diversity. Based on the shared ancestry and the constructed phylogenetic trees, we identified two major clusters in Swedish native cattle. In the first cluster, which includes Swedish mountain cattle breeds, there was little differentiation among the Fjäll, Fjällnära, Swedish Polled, and Bohus Polled breeds. The second cluster consists of breeds from southern Sweden: Väne, Ringamåla and Swedish Red. Interestingly, we also identified sub-structuring in the Fjällnära breed, which indicates different breeding practices on the farms that maintain this breed. CONCLUSIONS: This study represents the first comprehensive genome-wide analysis of the genetic relatedness and diversity in Swedish native cattle breeds. Our results show that different demographic patterns such as genetic isolation and cross-breeding have shaped the genomic diversity of Swedish native cattle breeds and that the Swedish mountain breeds have retained their authentic distinct gene pool without significant contribution from any of the other European cattle breeds that were included in this study.


Assuntos
Bovinos/genética , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Característica Quantitativa Herdável , Suécia
8.
PLoS One ; 14(6): e0218719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220166

RESUMO

Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better understanding of the mechanisms underlying genetic resistance might lead to more effective breeding programmes. In this study, we compare transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing. A total of 24 kids, 12 susceptible and 12 GIN resistant based on the estimated breeding value, were infected twice with 10,000 L3 Haemonchus contortus. Physiological and parasitological parameters were monitored during infection. Seven weeks after the second infection, extreme kids (n = 6 resistant and 6 susceptible), chosen on the basis of the fecal egg counts (FEC), and 3 uninfected control animals were slaughtered. Susceptible kids had significantly higher FEC compared with resistant kids during the second infection with no differences in worm burden, male and female worm count or establishment rate. A higher number of differentially expressed genes (DEG) were identified in infected compared with non-infected animals in both abomasal mucosa (792 DEG) and lymph nodes (1726 DEG). There were fewer DEG in resistant versus susceptible groups (342 and 450 DEG, in abomasal mucosa and lymph nodes respectively). 'Cell cycle' and 'cell death and survival' were the main identified networks in mucosal tissue when comparing infected versus non-infected kids. Antigen processing and presentation of peptide antigen via major histocompatibility complex class I were in the top biological functions for the DEG identified in lymph nodes. The TGFß1 gene was one of the top 5 upstream DEG in mucosal tissue. Our results are one of the fist investigating differences in the expression profile induced by GIN infection in goats.


Assuntos
Gastroenteropatias/genética , Doenças das Cabras/genética , Cabras , Infecções por Nematoides/genética , Transcriptoma , Animais , Suscetibilidade a Doenças/parasitologia , Feminino , Gastroenteropatias/parasitologia , Gastroenteropatias/veterinária , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Doenças das Cabras/parasitologia , Cabras/genética , Cabras/parasitologia , Masculino , Infecções por Nematoides/veterinária , Contagem de Ovos de Parasitas/veterinária
9.
Genes (Basel) ; 10(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242710

RESUMO

The spectrum of modern horse populations encompasses populations with a long history of development in isolation and relatively recently formed types. To increase our understanding of the evolutionary history and provide information on how to optimally conserve or improve these populations with varying development and background for the future, we analyzed genotype data of 184 horses from 9 Dutch or common horse populations in the Netherlands: The Belgian draft horse, Friesian horse, Shetland pony, Icelandic horse, Gelder horse, Groninger horse, harness horse, KWPN sport horse and the Lipizzaner horse population. Various parameters were estimated (e.g., runs of homozygosity and FST values) to gain insight into genetic diversity and relationships within and among these populations. The identified genomic makeup and quantified relationships did mostly conform to the development of these populations as well as past and current breeding practices. In general, populations that allow gene-flow showed less inbreeding and homozygosity. Also, recent bottlenecks (e.g., related to high selective pressure) caused a larger contribution of long ROHs to inbreeding. Maintaining genetic diversity through tailor-made breeding practices is crucial for a healthy continuation of the investigated, mostly inbred and (effectively) small sized horse populations, of which several already experience inbreeding related issues.


Assuntos
Genoma/genética , Genômica , Cavalos/genética , Animais , Cruzamento , Genótipo , Humanos , Endogamia , Países Baixos , Polimorfismo de Nucleotídeo Único/genética
10.
Epigenetics ; 14(7): 685-707, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070073

RESUMO

DNA methylation in CpGs dinucleotides is associated with high mutability and disappearance of CpG sites during evolution. Although the high mutability of CpGs is thought to be relevant for vertebrate evolution, very little is known on the role of CpG-related mutations in the genomic diversification of vertebrates. Our study analysed genetic differences in chickens, between Red Junglefowl (RJF; the living closest relative to the ancestor of domesticated chickens) and domesticated breeds, to identify genomic dynamics that have occurred during the process of their domestication, focusing particularly on CpG-related mutations. Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) between RJF and these domesticated breeds were assessed in a reduced fraction of their genome. Additionally, DNA methylation in the same fraction of the genome was measured in the sperm of RJF individuals to identify possible correlations with the mutations found between RJF and the domesticated breeds. Our study shows that although the vast majority of CpG-related mutations found relate to CNVs, CpGs disproportionally associate to SNPs in comparison to CNVs, where they are indeed substantially under-represented. Moreover, CpGs seem to be hotspots of mutations related to speciation. We suggest that, on the one hand, CpG-related mutations in CNV regions would promote genomic 'flexibility' in evolution, i.e., the ability of the genome to expand its functional possibilities; on the other hand, CpG-related mutations in SNPs would relate to genomic 'specificity' in evolution, thus, representing mutations that would associate with phenotypic traits relevant for speciation.


Assuntos
Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Evolução Molecular , Vertebrados/genética , Animais , Galinhas/genética , Ilhas de CpG/genética , Especiação Genética , Genoma/genética , Humanos , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética
11.
Hereditas ; 154: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163665

RESUMO

BACKGROUND: Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. RESULTS: Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007-2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. CONCLUSION: Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future.


Assuntos
Variação Genética , Endogamia , Carneiro Doméstico/genética , Animais , Feminino , Genética Populacional , Genótipo , Heterozigoto , Masculino , Repetições de Microssatélites , Linhagem , Densidade Demográfica , Suécia
12.
PLoS One ; 10(4): e0120580, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25855978

RESUMO

This study aimed at investigating the genetic diversity, relationship and population structure of 110 local Swedish chickens derived from five breeds (Gotlandshöna, Hedemorahöna, Öländsk dvärghöna, Skånsk blommehöna, and Bohuslän- Dals svarthöna, in the rest of the paper the shorter name Svarthöna is used) using 24 microsatellite markers. In total, one hundred thirteen alleles were detected in all populations, with a mean of 4.7 alleles per locus. For the five chicken breeds, the observed and expected heterozygosity ranged from 0.225 to 0.408 and from 0.231 to 0.515, with the lowest scores for the Svarthöna and the highest scores for the Skånsk blommehöna breeds, respectively. Similarly, the average within breed molecular kinship varied from 0.496 to 0.745, showing high coancestry, with Skånsk blommehöna having the lowest and Svarthöna the highest coancestry. Furthermore, all breeds showed significant deviations from Hardy-Weinberg expectations. Across the five breeds, the global heterozygosity deficit (FIT) was 0.545, population differentiation index (FST) was 0.440, and the global inbreeding of individuals within breed (FIS) was 0.187. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed two main clusters, with Hedemorahöna and Öländsk dvärghöna breeds in one cluster, and Gotlandshöna and Svarthöna breeds in the second cluster leaving the Skånsk blommehöna in the middle. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the five breeds was at K = 4, with Hedemorahöna, Gotlandshöna and Svarthöna breeds forming their own distinct clusters, while Öländsk dvärghöna and Skånsk blommehöna breeds clustered together. Losses in the overall genetic diversity of local Swedish chickens due to breeds extinction varied from -1.46% to -6.723%. The results of the current study can be used as baseline genetic information for genetic conservation program, for instance, to control inbreeding and to implement further genetic studies in local Swedish chickens.


Assuntos
Galinhas/genética , Variação Genética , Repetições de Microssatélites , Animais , Cruzamento , Conservação dos Recursos Naturais , Filogenia , Suécia
13.
Front Genet ; 6: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741364

RESUMO

The aim of this paper is to study genetic diversity in the two Swedish local chicken breeds Bohuslän-Dals svarthöna and Hedemorahöna. The now living birds of both of these breeds (about 500 for Bohuslän-Dals svarthöna and 2600 for Hedemorahöna) originate from small relicts of earlier larger populations. An additional aim was to make an attempt to map loci associated with a trait that are segregating in both these breeds. The 60k SNP chip was used to genotype 12 Bohuslän-Dals svarthöna and 22 Hedemorahöna. The mean inbreeding coefficient was considerably larger in the samples from Hedemorahöna than in the samples from Bohuslän-Dals svarthöna. Also the proportion of homozygous SNPs in individuals was larger in Hedemorahöna. In contrast, on the breed level, the number of segregating SNPs were much larger in Hedemorahöna than in Bohuslän-Dals svarthöna. A multidimensional scaling plot shows that the two breeds form clusters well-separated from each other. Both these breeds segregate for the dermal hyperpigmentation phenotype. In Bohuslän-Dals svarthöna most animals have dark skin, but some individuals with lighter skin exists (most easily detected by their red comb). An earlier study of the Fm locus showed that this breed has the same complex rearrangement involving the EDN3 gene as Silkie chicken and two other studied Asian breeds. In the breed Hedemorahöna, most individuals have normal skin pigmentation (and red comb), but there are some birds with darker skin and dark comb. In this study the involvement of the EDN3 gene is confirmed also in Hedemorahöna. In addition we identify a region on chromosome 21 that is significantly associated with the trait.

14.
Hereditas ; 151(6): 229-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25588309

RESUMO

In this study part of the mitochondrial D-loop was sequenced in a total of 40 samples from nine Swedish local chicken breeds. Among our 40 samples we observed 15 segregating sites and seven different haplotypes. The most common haplotype was present in all investigated individuals in five breeds and together with other haplotypes in three breeds. This haplotype is common in domestic chickens and has been found in both local and commercial breeds in many parts of the world. The breed Ölandshöna was most different from the other Swedish breeds with all three individuals sharing a haplotype that differed from the most common haplotype at nine of the 15 segregating sites.


Assuntos
Galinhas/genética , DNA Mitocondrial/genética , Variação Genética , Animais , Cruzamento , Feminino , Haplótipos , Masculino , Filogenia , Análise de Sequência de DNA , Suécia
15.
G3 (Bethesda) ; 3(12): 2305-12, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24170737

RESUMO

By studying genomic changes over time in populations subjected to strong artificial directional selection, we can gain insights to the dynamics of beneficial alleles originating from the founder population or emerging as novel mutations undergoing ongoing selection. The Virginia lines are a chicken resource population generated by long-term bi-directional, single-trait selection for juvenile body weight. We studied genome-wide allele frequency changes from generation 40 to 53 using genome-wide genotypes from directional and relaxed selection lines. Overall, there were small changes in allele frequencies at individual loci over the studied time period; but, on average, the changes were greater in lines with larger phenotypic changes. This is consistent with previous findings that much of the response to selection over the first 40 years of selection was attributable to utilization of standing genetic variation at many loci in the genome, indicating a mostly polygenic architecture for body weight. Over the course of the selection experiment, the largest phenotypic response to selection was observed in the high-weight selected line, and in this line we detected a single locus where the allele frequency changed rapidly during a late stage of the experiment. This locus likely contains a novel, beneficial mutation that appeared between generations 40 and 45 and was driven to fixation in 5 to 10 generations. This result illustrates the dependence of continued long-term selection response on standing genetic variation at many loci as well as strong, novel, beneficial mutations.


Assuntos
Peso Corporal/genética , Galinhas/fisiologia , Frequência do Gene , Seleção Genética , Adaptação Fisiológica/genética , Animais , Cruzamento , Variação Genética , Haplótipos , Perda de Heterozigosidade , Fenótipo
16.
PLoS One ; 8(7): e69097, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894413

RESUMO

The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions.


Assuntos
Variações do Número de Cópias de DNA/genética , Calicreínas/genética , Família Multigênica/genética , Sequência de Bases , Estudos de Coortes , Feminino , Marcadores Genéticos/genética , Haplótipos/genética , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Neoplasias da Próstata/genética , Deleção de Sequência , /genética
17.
G3 (Bethesda) ; 3(8): 1253-60, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23708300

RESUMO

We analyzed genotypes from ~10K single-nucleotide polymorphisms (SNPs) in two families of an F2 intercross between Red Junglefowl and White Leghorn chickens. Possible null alleles were found by patterns of incompatible and missing genotypes. We estimated that 2.6% of SNPs had null alleles compared with 2.3% with genotyping errors and that 40% of SNPs in which a parent and offspring were genotyped as different homozygotes had null alleles. Putative deletions were identified by null alleles at adjacent markers. We found two candidate deletions that were supported by fluorescence intensity data from a 60K SNP chip. One of the candidate deletions was from the Red Junglefowl, and one was present in both the Red Junglefowl and White Leghorn. Both candidate deletions spanned protein-coding regions and were close to a previously detected quantitative trait locus affecting body weight in this population. This study demonstrates that the ~50K SNP genotyping arrays now available for several agricultural species can be used to identify null alleles and deletions in data from large families. We suggest that our approach could be a useful complement to linkage analysis in experimental crosses.


Assuntos
Galinhas/genética , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Deleção de Genes , Genótipo , Homozigoto , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas
18.
Ann Hum Genet ; 75(4): 447-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21534937

RESUMO

The spectrum of mutations in the von Willebrand factor (VWF) gene in a Swedish type 1 von Willebrand disease (VWD) population was investigated. To gain more knowledge about the dynamics of VWD mutations, the data were analyzed from a population genetics perspective. The VWF gene was resequenced in 54 Swedish patients diagnosed with type 1 VWD. Fifty-five variable sites were located in exons, 10 in the promoter and 38 in introns. The spectrum of mutations was similar to a European study, but included 10 new candidate mutations. The synonymous sites were evenly distributed along the coding sequence, whereas nonsynonymous sites were located into three clusters. Overall, 44% of patients had no mutations or candidate mutations and no promoter haplotype was significantly associated with disease. In 11 patients (20%), more than one mutation or candidate mutation was detected. The allelic identity for the putative disease-causing mutations was approximately 0.1, compatible with an overall disease frequency of 1%. VWF sequences for exon 28 from eight monkey species were compared with the variable positions found in our patients. Positions classified as mutations were overrepresented among sites that were fixed in all eight monkey species. No general increase of the mutation rate was found for the pseudogene region.


Assuntos
Mutação , Doença de von Willebrand Tipo 1/genética , Fator de von Willebrand/genética , Humanos , Polimorfismo Genético , Pseudogenes , Suécia
20.
PLoS Genet ; 7(12): e1002412, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216010

RESUMO

Dermal hyperpigmentation or Fibromelanosis (FM) is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3), a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Endotelina-3/genética , Plumas/crescimento & desenvolvimento , Rearranjo Gênico , Característica Quantitativa Herdável , Pigmentação da Pele/genética , Animais , Sequência de Bases , Cruzamento , Proliferação de Células , Embrião de Galinha , Mapeamento Cromossômico , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Melanócitos/citologia , Melanócitos/metabolismo , Dados de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...